Form Energy invests in energy storage and the steel industry

Form Energy discovers an innovative solution that could transform long-term energy storage and decarbonize the steel industry, two major challenges for the global energy transition.

Share:

Une innovation révolutionnaire dans le stockage d'énergie et l'industrie de l'acier.

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

The global energy transition is well underway, but it faces unresolved technical hurdles that are preventing us from achieving our global climate goals by mid-century. While initiatives such as the adoption of electric vehicles, the installation of solar and wind farms, and improving the energy efficiency of homes and appliances are underway, other crucial aspects still rely on unproven technologies. These challenges include the need to develop a long-term energy storage solution and the decarbonization of hard-to-kill sectors such as heavy transport, power generation and energy efficiency.
Form Energy, a Massachusetts-based company, has made a surprising discovery in its attempt to solve the problem. long-term energy storage. Lur innovative air-iron battery technology could not only transform energy storage, but also clean up an essential part of the steel industry. This battery stores energy by converting rust into pure iron, then feeds it back into the grid by transforming this iron into rust. This same process can be applied to purify iron ore used in the steel industry, traditionally one of the most carbon-intensive components of the steel supply chain.

Challenges and solutions for the steel industry

Steel production is currently the largest emitter of greenhouse gases in the manufacturing sector, responsible for at least 7% of all man-made emissions. The traditional iron ore purification process, which uses high-emission coking coal, is extremely polluting. Although there are already options for reducing emissions from this industry, none has yet proved to be a magic bullet. However, Form Energy’s new air-iron battery technology could well be that solution. By using a low-temperature alkaline solution and an electric current to produce powdered metallic iron, this process could be continuously efficient and financially competitive with fossil-fuel furnace technologies.

A promising technology

Form Energy claims that their electrolytic process could be easier to deploy because it can be scaled up in small increments, unlike the billion-dollar investments required for traditional furnaces. Mateo Jaramillo, co-founder and CEO of Form Energy, says: “We’ve found a more economical, scalable and efficient process for producing green iron. We know it has a chance of creating considerable value, so we’re going to pursue it.”

Economic and environmental implications

Form Energy’s project was one of 13 selected to receive funding from the U.S. Department of Energy’s Advanced Research Projetc Agency-Energy (ARPA-E) last month. Decarbonizing steel would have major implications for many downstream economic sectors. The World Economic Forum points out that “if all the two billion metric tons of crude steel produced worldwide each year were green iron, it would reduce not only emissions from steel, but also emissions from all steel-dependent industries.” The transformation of these key sectors demonstrates the importance of technological innovation and strategic partnerships for a sustainable energy future.

The collapse in storage costs positions batteries as a key lever for dispatchable solar, but dependence on Chinese suppliers creates growing tension between competitiveness and supply chain security.
JA Solar has launched a microgrid combining 5.2 MW of solar and 2.61 MWh of storage at an industrial site in Sicily, marking its first application of the "PV+Storage+X" model in Italy.
Sinexcel has installed a 2MW/8MWh energy storage system in Matsusaka, marking a breakthrough in a regulated market after five years of technical partnerships and gradual deployment in Japan.
Inlyte Energy has successfully completed factory validation testing of its first full-scale iron-sodium battery, witnessed by Southern Company, paving the way for a pilot installation in the United States in early 2026.
Neoen begins construction of a new 305 MW stage in Australia, raising its total battery storage capacity in the country to 2 GW, and signs two additional virtual battery contracts with ENGIE.
ENGIE has awarded NHOA Energy the contract for a 320 MWh battery energy storage system in Drogenbos, marking a new step in their industrial partnership in Belgium.
Stardust Power has completed an independent review of its lithium refinery project in Muskogee, confirming technical feasibility and compliance with industry standards for its initial production phase.
California-based battery manufacturer South 8 Technologies has secured $11mn to boost production of its LiGas cells, targeting military and space applications under extreme conditions.
Samsung SDI will supply LFP cells for energy storage systems in the United States starting in 2027, under a multi-year deal valued at $1.53bn.
Bitzero Holdings launches a new 70 MW expansion phase in Namsskogan, Norway, targeting a total capacity of 110 MW and an upgrade of its high-performance computing capabilities.
Remixpoint and Nippon Chikudenchi have formalised a partnership to develop seven 2MW/8MWh BESS facilities by October 2026 through a newly established joint venture.
UK-based Ray Systems has selected Beam Global to supply tailored battery systems for its new autonomous underwater drones, aiming to extend mission duration without compromising stealth or manoeuvrability.
Sungrow has started construction on a 200 MW/400 MWh battery storage system for ENGIE, aimed at strengthening grid stability in a state heavily reliant on renewable energy.
Blue Current secures over $80mn in funding led by Amazon to industrialise its silicon solid-state batteries for large-scale mobility and stationary applications.
AGL has begun construction of a 500 MW battery storage system in Tomago, a project valued at AUD800mn ($530.8mn), in the Hunter region, with commissioning expected in 2027.
Real estate group JALCO Holdings diversifies its activities by investing in a 2 MW/8.1 MWh battery energy storage system developed by Taoke Energy in Narita, Chiba Prefecture.
BKW is conducting feasibility studies on four sites to assess the profitability and development conditions for large-scale battery storage installations in Switzerland.
A 300 MW/1,200 MWh electrochemical energy storage facility has been commissioned in China, marking a major milestone in the country’s largest publicly funded energy infrastructure project.
Sustainable Holdings is developing a battery storage facility in Matsusaka, with operations scheduled to begin in June 2026 on Japan’s electricity market.
California-based Korbel Winery is now equipped with an integrated energy storage and intelligent control system, installed by Energy Toolbase and BPi, to optimise usage and address local grid constraints.

All the latest energy news, all the time

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.