Form Energy invests in energy storage and the steel industry

Form Energy discovers an innovative solution that could transform long-term energy storage and decarbonize the steel industry, two major challenges for the global energy transition.

Share:

Une innovation révolutionnaire dans le stockage d'énergie et l'industrie de l'acier.

The global energy transition is well underway, but it faces unresolved technical hurdles that are preventing us from achieving our global climate goals by mid-century. While initiatives such as the adoption of electric vehicles, the installation of solar and wind farms, and improving the energy efficiency of homes and appliances are underway, other crucial aspects still rely on unproven technologies. These challenges include the need to develop a long-term energy storage solution and the decarbonization of hard-to-kill sectors such as heavy transport, power generation and energy efficiency.
Form Energy, a Massachusetts-based company, has made a surprising discovery in its attempt to solve the problem. long-term energy storage. Lur innovative air-iron battery technology could not only transform energy storage, but also clean up an essential part of the steel industry. This battery stores energy by converting rust into pure iron, then feeds it back into the grid by transforming this iron into rust. This same process can be applied to purify iron ore used in the steel industry, traditionally one of the most carbon-intensive components of the steel supply chain.

Challenges and solutions for the steel industry

Steel production is currently the largest emitter of greenhouse gases in the manufacturing sector, responsible for at least 7% of all man-made emissions. The traditional iron ore purification process, which uses high-emission coking coal, is extremely polluting. Although there are already options for reducing emissions from this industry, none has yet proved to be a magic bullet. However, Form Energy’s new air-iron battery technology could well be that solution. By using a low-temperature alkaline solution and an electric current to produce powdered metallic iron, this process could be continuously efficient and financially competitive with fossil-fuel furnace technologies.

A promising technology

Form Energy claims that their electrolytic process could be easier to deploy because it can be scaled up in small increments, unlike the billion-dollar investments required for traditional furnaces. Mateo Jaramillo, co-founder and CEO of Form Energy, says: “We’ve found a more economical, scalable and efficient process for producing green iron. We know it has a chance of creating considerable value, so we’re going to pursue it.”

Economic and environmental implications

Form Energy’s project was one of 13 selected to receive funding from the U.S. Department of Energy’s Advanced Research Projetc Agency-Energy (ARPA-E) last month. Decarbonizing steel would have major implications for many downstream economic sectors. The World Economic Forum points out that “if all the two billion metric tons of crude steel produced worldwide each year were green iron, it would reduce not only emissions from steel, but also emissions from all steel-dependent industries.” The transformation of these key sectors demonstrates the importance of technological innovation and strategic partnerships for a sustainable energy future.

EDF Power Solutions has been selected by the Japanese government to build a 110 MW lithium-ion battery after winning a public tender aimed at enhancing the flexibility of the country's electricity grid.
Atmos Renewables has completed financing for a 100 MW battery energy storage system in Western Australia, marking the company's first asset of this type in the region and strengthening its presence in the Australian energy market.
Eos Energy Enterprises has received an additional $22.7mn from the US Department of Energy to complete the first phase of its battery manufacturing project in the United States, bringing total funding to $90.9mn.
A Wood Mackenzie report estimates required battery investments at $1.2 trillion to integrate an additional 5,900 GW of renewable energy, highlighting battery storage systems' key role in stabilising electrical grids.
Globeleq and African Rainbow Energy finalise financing for Africa's largest standalone battery energy storage project, raising ZAR 5.4 billion ($300 million) from Absa and Standard Bank in South Africa.
Matrix Renewables and Pioneer Community Energy have signed an energy capacity contract for a 22 MW battery storage project in Kern County, operational from early 2026.
The Ignitis Group is starting the construction of three battery energy storage systems in Lithuania, with a combined capacity of 291 MW and a total investment of €130mn.
Alinta Energy has appointed GenusPlus Group to build the first phase of the Reeves Plains Energy Hub Battery, a high-capacity storage facility designed to support grid stability in South Australia.
A partnership between Indonesia Battery and Contemporary Amperex Technology aims to launch a lithium-ion battery plant in Indonesia by the end of 2026, with a 6.9 gigawatt-hour capacity and planned expansion.
State Grid Wuzhong Power Supply Company announces the completion of the energy storage compartment at Tongli substation, a key step for the upcoming integration of a 300 MW shared storage power plant in Ningxia.
Globeleq and African Rainbow Energy finalise commercial agreements for a 153 MW energy storage project in South Africa, aimed at enhancing national grid stability and optimising peak energy management.
Estimated at 40.9 billion dollars in 2024, the global microgrid market is expected to grow at an average annual rate of 19.28% to reach 191.01 billion dollars by 2033, driven notably by innovative energy contracts.
The U.S. energy storage market set a historic record in early 2025, surpassing 2 GW installed in the first quarter despite increasing uncertainty regarding federal fiscal policies and tax credits.
The Sino-Moroccan joint venture COBCO has begun manufacturing essential lithium-ion battery components at its Jorf Lasfar plant, targeting a final annual capacity of 70 GWh, enough to equip one million electric vehicles.
Trianel teams with BKW and Luxcara to build a 900 MW lithium-iron-phosphate storage park in Waltrop, the first phase of a complex that could reach 1.5 GW and stabilise the German grid.
Blue Whale Energy partners with UNIGRID to deploy behind-the-meter storage systems adapted to constrained commercial and industrial urban areas in Southeast Asia.
Northvolt, recently placed under judicial administration, has received an indicative offer from a foreign investor to acquire its Swedish assets, signaling a potential imminent restart of its battery production units.
The frame agreement aligns Jinko ESS’s utility-scale storage technology with Metlen’s development pipeline, unlocking more than 3GWh across Chile and Europe while reducing delivery risk for grid operators.
Buffalo-based Viridi has obtained the cETLus mark for its RPS150 system, meeting the UL 9540 standard only days after a public battery fire-containment demonstration.
Tesla is building a giant electricity storage facility in Shanghai, China, signing a $560 million contract to meet growing demands on the urban electricity grid.