NRC recommends hybrid regulatory framework for fusion systems

The U.S. Nuclear Regulatory Commission will regulate fusion energy systems under a derived matter framework, rather than a nuclear reactor framework. This decision is intended to provide regulatory certainty for fusion systems and ensure their safe and effective deployment.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25£/month*

*billed annually at 99£/year for the first year then 149,00£/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2£/month*
then 14.90£ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

The U.S. Nuclear Regulatory Commission(NRC) has announced plans to regulate fusion energy systems under a derived matter framework, as opposed to a nuclear reactor framework. This comes as “dozens” of companies are working on developing pilot-scale commercial fusion models, some of which are expected to reach proof-of-concept and net power production in the mid- to late-2020s.

The challenges of fusion systems regulation

Fusion systems produce electricity by combining hydrogen atoms to form helium, which means they do not involve special nuclear material or produce the self-sustaining neutron chain reaction that defines nuclear fission reactors. Therefore, they are not subject to NRC regulatory requirements as nuclear reactors.

The NRC staff presented three suggested options for licensing and regulating fusion systems earlier this year: categorization as “use facilities” with a new regulatory framework developed to address specific hazards, a spin-off approach augmenting existing regulations for spin-off licensing, or a hybrid framework. In its submission, staff recommended the adoption of a hybrid system.

Tritium and other radioactive materials used in fusion systems are normally classified as derivative material, and the NRC directed its staff to create a regulatory framework for fusion systems based on the agency’s existing process for licensing the use of these materials.

Fusion systems: a safe and clean alternative to nuclear fission reactors

The U.S. Department of Energy has allocated up to $50 million in federal funding to support experimental research in fusion energy science as part of the administration’s “10-year vision” to accelerate fusion energy. Some commercial fusion systems are now expected to reach proof-of-concept and even net power production in the mid-to-late 2020s, with deployment planned for the 2030s.

A U.S. fusion system developer, Helion Energy, expressed support for the NRC’s announcement, saying, “This approach provides a clear and effective regulatory path for our team to deploy clean and safe fusion energy.”

Indeed, the U.S. Nuclear Regulatory Commission (NRC) has announced its intention to regulate fusion energy systems under a derived matter framework rather than a nuclear reactor framework, while many companies are working on developing pilot-scale commercial fusion models.

The NRC staff has recommended a hybrid regulatory framework for licensing and regulating fusion systems, and the U.S. Department of Energy has allocated up to $50 million in federal funding to support experimental research in fusion energy science. Fusion systems produce electricity by combining hydrogen atoms to form helium, without involving special nuclear material or producing the self-sustaining neutron chain reaction associated with nuclear fission reactors.

TRISO-X has started above-ground works on the first U.S. facility dedicated to manufacturing fuel for small modular reactors, marking a key industrial milestone in the deployment of the Xe-100.
The first Russian test rig for the experimental ITER reactor has been delivered to the site in France, marking a major milestone in the international collaboration on nuclear fusion.
A strategic report reveals the industrial and energy potential of Allseas’ offshore small modular reactor, which could create up to 40,000 jobs and reduce investment in the power grid.
Niigata’s governor is expected to approve the restart of one reactor at the Kashiwazaki-Kariwa plant, inactive since the Fukushima accident, reviving a strategic asset for Japan’s energy sector.
Canadian firm Aecon and private developer Norsk Kjernekraft have signed a strategic agreement targeting the deployment of BWRX-300 small modular reactors across several potential locations in Norway.
The South African government has officially lifted the PBMR reactor out of inactivity, launching a public investment programme and transferring the strategic nuclear asset from Eskom to Necsa.
The French Court of Auditors values EDF’s grand carénage at over €100bn, while EPR2 reactors already exceed €67–75bn. The State simultaneously directs regulation, financing, and industrial strategy, raising the risk of conflict of interest.
Belarus commits major public investment to add a third reactor at the Ostrovets plant and initiates studies for a second nuclear site to support national energy demand.
Framatome’s accident-tolerant fuel prototype has completed a second 24-month cycle in a commercial nuclear reactor in the United States, paving the way for a third phase of industrial testing.
The Wylfa site in Wales will host three Rolls-Royce small modular reactors from 2026, marking a strategic investment in the UK’s nuclear expansion.
EDF confirmed that the Flamanville EPR has reached a major milestone, while planning a nearly year-long shutdown in 2026 for extensive regulatory inspections and key component replacement.
EDF is opening access to its long-term nuclear supply contracts to companies consuming more than 7 GWh per year, an adjustment driven by the gradual end of the Arenh mechanism.
South Korean authorities have approved the continued operation of the Kori 2 reactor for an additional eight years, marking a key milestone in the national nuclear strategy.
A public-private consortium is developing a 5 MW thermal microreactor designed to operate without refuelling for ten years, marking a strategic step in Brazil's nuclear innovation efforts.
EDF has announced that the Flamanville EPR reactor is now operating at 80% of its capacity. The target of reaching full output by the end of autumn remains confirmed by the utility.
The accelerated approval of the Aurora facility’s nuclear safety plan marks a strategic milestone in rebuilding a domestic nuclear fuel production line in the United States.
The Industrikraft consortium will invest SEK400mn ($42.2mn) to become a shareholder in Videberg Kraft, marking a new phase in Sweden’s nuclear project led by Vattenfall on the Värö Peninsula.
MVM Group has signed an agreement with Westinghouse to secure VVER-440 fuel supplies from 2028, reducing its reliance on Russia and strengthening nuclear cooperation between Budapest and Washington.
The delivery of nuclear fuel by Russian subsidiary TVEL to the Da Lat research reactor marks a key step in strengthening the nuclear commercial partnership between Moscow and Hanoi.
US supplier X-energy has formalised a graphite supply contract with Japan's Toyo Tanso for the construction of its first four small modular reactors, in partnership with Dow and backed by the US Department of Energy.

All the latest energy news, all the time

Annual subscription

8.25£/month*

*billed annually at 99£/year for the first year then 149,00£/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2£/month*
then 14.90£ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.