The largest Sand Battery optimizes Finnish district heating

This thermal storage infrastructure, combined with Elisa’s optimization, illustrates how energy flexibility helps reduce emissions and stabilize the electrical grid within a context of increasing district heating electrification.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

Loviisan Lämpö, a Finnish district heating company, is now operating the largest Sand Battery to produce cleaner heating energy. This facility aims to reduce dependence on fossil fuels, while storing renewable energy as heat. The system consists of thousands of tons of heated sand, capable of retaining heat for extended periods. The operators assert that this setup helps reduce pollutant emissions, relying on electricity from low-carbon sources.

A system designed for energy flexibility

The technical solution for this thermal storage was developed by Polar Night Energy, a company based in Tampere. Its goal is to provide district heating companies with a system that allows them to store energy efficiently and use it during periods of high demand. According to Loviisan Lämpö, carbon dioxide (CO2) emissions could decrease by 70% in the Pornainen network, representing a reduction of about 160 tons per year. However, optimizing the charge and discharge cycle remains a major challenge to ensure the project’s economic viability.

Elisa, a Finnish telecom operator and international digital services provider, brings its artificial intelligence (AI) technology to automate the Sand Battery’s flexibility offering. This solution identifies optimal times to power the system with electricity or, conversely, reduce consumption when the grid requires it. Fingrid, the Transmission System Operator (TSO) in Finland, remunerates entities capable of stabilizing energy production and consumption. Implementing this mechanism would allow district heating operators to limit the purchase of traditional fuels.

The importance of AI in storage management

According to Jukka-Pekka Salmenkaita, VP in charge of AI at Elisa, the flexibility provided by thermal storage is crucial for the future of the energy sector. The AI continuously calculates changes in electricity prices as well as production forecasts, in order to optimize the Sand Battery’s charging. This automated control facilitates the injection of energy during periods of overproduction, especially when wind production exceeds demand. In such a scenario, the heating company is paid to consume more electricity and help balance the grid.

On its side, Polar Night Energy emphasizes the need to further electrify heating to reduce the share of fossil fuels. Liisa Naskali, COO of the company, points out that the ability to participate in reserve markets is an important lever to encourage this transition. In the event of an unexpected drop in electricity production or a power plant shutdown, the Sand Battery can halt its consumption and continue to provide heat through stored energy. Operators see not only an environmental benefit but also a way to secure their long-term revenue.

A solution suited to the Finnish context

Figures for carbon neutrality in Finland’s electricity already reach 94%, according to official data from Finnish Energy. This context further justifies moving toward the electrification of heating, still a major source of emissions. The Pornainen facility, which includes a steel cylinder 15 meters in diameter and 13 meters tall, has a power capacity of 1 MW (megawatt) and a thermal storage capacity of 100 MWh (megawatt-hour). These specifications make it possible to cover multiple days, or even several weeks of usage, depending on requirements.

Mikko Paajanen, CEO of Loviisan Lämpö, believes that revenues from reserve market participation ensure solid profitability for the Sand Battery. Elisa’s expertise in electrical optimization is based on extensive market experience, where price fluctuations demand constant adjustments. The company uses an optimization algorithm to determine, in real time, when it is more advantageous to consume or reduce consumption. Construction work is progressing, and commissioning is scheduled after the final tests, which will focus on the storage system’s efficiency and operational performance.

US-based Rondo Energy and SCG Cleanergy have completed the installation of a 33 MWh heat battery at a cement plant in Thailand, the first of its kind in Southeast Asia, delivering steam to power a turbine for industrial electricity generation.
Entech and Primeo Energie create Primtech Batteries to develop battery electricity storage projects in France and the European Union, targeting 100 MW installed by 2029.
Three New York public high schools are introducing a new energy storage module this year, through a partnership between NineDot Energy and Solar One aimed at preparing students for careers in distributed energy.
Nuvve Holding Corp. plans three 2MW battery installations in Eastern Zealand to strengthen the Danish grid and optimise revenues through its proprietary software platform.
HS Hyosung partners with Umicore to produce silicon anodes, a key material for next-generation batteries, through a €120 mn investment to strengthen its position in energy storage.
LG Energy Solution partners with South 8 Technologies to develop lithium-ion batteries capable of operating at -60 °C, strengthening its position in the space sector alongside KULR Technology Group and NASA.
Masdar commits to developing a 300MW/600MWh battery storage system in Uzbekistan, marking a major step in modernising the national grid and securing investments in renewable energy.
Jabil and Inno will co-develop a 15,000 sqm plant in Rayong, Thailand, to manufacture metal enclosures for battery energy storage systems, aiming to enhance vertical integration and secure supply chains.
Adani Group launches a 1126 MW project in Khavda, marking its first entry into energy storage, with one of the largest BESS systems ever built at a single site.
Kuwait is preparing a battery storage project with a capacity of up to 6 GWh to stabilise its power grid and address rising electricity demand.
Quino Energy secures $16mn in funding to scale global production of its organic electrolytes, with strategic support from investor Atri Energy Transition.
China's Envision Energy will supply a 680MW battery storage system to UK-based Statera Energy as part of the Carrington project, one of the largest in the country to reach financial close.
Girasol Energy begins grid-scale battery aggregation with two facilities totalling 4MW in Japan, marking a strategic expansion into balancing markets.
Driven by the recovery in the raw materials market, CBAK Energy posted a sharp rise in revenue in the third quarter, while its battery business enters a complex industrial transition.
Daiwa Energy & Infrastructure, Fuyo General Lease and Astmax have commissioned a 50MW/100MWh battery storage station in Sapporo, marking their entry into Japan’s large-scale energy storage market.
Sonnedix has started construction on a 125MWh battery storage system at its 30MWAC Oita solar site, with commercial operation planned for November 2026 and a JPY21.4bn ($142mn) financing secured.
Tamagawa Energy has completed the acquisition of a 2MW/8MWh battery site in Kagoshima for JPY690mn ($4.57mn), marking its entry into grid-scale storage.
Tokyo Asset Solution invests in two storage projects, including a standalone site in the Japanese capital, marking its entry into the large-scale sector with national and international partners.
LEAG Clean Power and Fluence Energy will build a 4 GWh battery energy storage system in Germany, marking a major step in the industrialisation of storage capacity at a European scale.
Plus Power secured $160mn in tax equity investments from Morgan Stanley to fund two battery storage facilities in Massachusetts and Maine, the largest ever developed in New England.

All the latest energy news, all the time

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.