The largest Sand Battery optimizes Finnish district heating

This thermal storage infrastructure, combined with Elisa’s optimization, illustrates how energy flexibility helps reduce emissions and stabilize the electrical grid within a context of increasing district heating electrification.

Share:

Loviisan Lämpö, a Finnish district heating company, is now operating the largest Sand Battery to produce cleaner heating energy. This facility aims to reduce dependence on fossil fuels, while storing renewable energy as heat. The system consists of thousands of tons of heated sand, capable of retaining heat for extended periods. The operators assert that this setup helps reduce pollutant emissions, relying on electricity from low-carbon sources.

A system designed for energy flexibility

The technical solution for this thermal storage was developed by Polar Night Energy, a company based in Tampere. Its goal is to provide district heating companies with a system that allows them to store energy efficiently and use it during periods of high demand. According to Loviisan Lämpö, carbon dioxide (CO2) emissions could decrease by 70% in the Pornainen network, representing a reduction of about 160 tons per year. However, optimizing the charge and discharge cycle remains a major challenge to ensure the project’s economic viability.

Elisa, a Finnish telecom operator and international digital services provider, brings its artificial intelligence (AI) technology to automate the Sand Battery’s flexibility offering. This solution identifies optimal times to power the system with electricity or, conversely, reduce consumption when the grid requires it. Fingrid, the Transmission System Operator (TSO) in Finland, remunerates entities capable of stabilizing energy production and consumption. Implementing this mechanism would allow district heating operators to limit the purchase of traditional fuels.

The importance of AI in storage management

According to Jukka-Pekka Salmenkaita, VP in charge of AI at Elisa, the flexibility provided by thermal storage is crucial for the future of the energy sector. The AI continuously calculates changes in electricity prices as well as production forecasts, in order to optimize the Sand Battery’s charging. This automated control facilitates the injection of energy during periods of overproduction, especially when wind production exceeds demand. In such a scenario, the heating company is paid to consume more electricity and help balance the grid.

On its side, Polar Night Energy emphasizes the need to further electrify heating to reduce the share of fossil fuels. Liisa Naskali, COO of the company, points out that the ability to participate in reserve markets is an important lever to encourage this transition. In the event of an unexpected drop in electricity production or a power plant shutdown, the Sand Battery can halt its consumption and continue to provide heat through stored energy. Operators see not only an environmental benefit but also a way to secure their long-term revenue.

A solution suited to the Finnish context

Figures for carbon neutrality in Finland’s electricity already reach 94%, according to official data from Finnish Energy. This context further justifies moving toward the electrification of heating, still a major source of emissions. The Pornainen facility, which includes a steel cylinder 15 meters in diameter and 13 meters tall, has a power capacity of 1 MW (megawatt) and a thermal storage capacity of 100 MWh (megawatt-hour). These specifications make it possible to cover multiple days, or even several weeks of usage, depending on requirements.

Mikko Paajanen, CEO of Loviisan Lämpö, believes that revenues from reserve market participation ensure solid profitability for the Sand Battery. Elisa’s expertise in electrical optimization is based on extensive market experience, where price fluctuations demand constant adjustments. The company uses an optimization algorithm to determine, in real time, when it is more advantageous to consume or reduce consumption. Construction work is progressing, and commissioning is scheduled after the final tests, which will focus on the storage system’s efficiency and operational performance.

Atmos Renewables has completed financing for a 100 MW battery energy storage system in Western Australia, marking the company's first asset of this type in the region and strengthening its presence in the Australian energy market.
Eos Energy Enterprises has received an additional $22.7mn from the US Department of Energy to complete the first phase of its battery manufacturing project in the United States, bringing total funding to $90.9mn.
A Wood Mackenzie report estimates required battery investments at $1.2 trillion to integrate an additional 5,900 GW of renewable energy, highlighting battery storage systems' key role in stabilising electrical grids.
Chinese company HyperStrong and Swedish firm Repono AB announce a strategic agreement to jointly implement large-scale energy storage projects totalling 1.4 GWh in Europe by the end of 2027.
Globeleq and African Rainbow Energy finalise financing for Africa's largest standalone battery energy storage project, raising ZAR 5.4 billion ($300 million) from Absa and Standard Bank in South Africa.
Matrix Renewables and Pioneer Community Energy have signed an energy capacity contract for a 22 MW battery storage project in Kern County, operational from early 2026.
The Ignitis Group is starting the construction of three battery energy storage systems in Lithuania, with a combined capacity of 291 MW and a total investment of €130mn.
Alinta Energy has appointed GenusPlus Group to build the first phase of the Reeves Plains Energy Hub Battery, a high-capacity storage facility designed to support grid stability in South Australia.
State Grid Wuzhong Power Supply Company announces the completion of the energy storage compartment at Tongli substation, a key step for the upcoming integration of a 300 MW shared storage power plant in Ningxia.
Globeleq and African Rainbow Energy finalise commercial agreements for a 153 MW energy storage project in South Africa, aimed at enhancing national grid stability and optimising peak energy management.
Estimated at 40.9 billion dollars in 2024, the global microgrid market is expected to grow at an average annual rate of 19.28% to reach 191.01 billion dollars by 2033, driven notably by innovative energy contracts.
The U.S. energy storage market set a historic record in early 2025, surpassing 2 GW installed in the first quarter despite increasing uncertainty regarding federal fiscal policies and tax credits.
The Sino-Moroccan joint venture COBCO has begun manufacturing essential lithium-ion battery components at its Jorf Lasfar plant, targeting a final annual capacity of 70 GWh, enough to equip one million electric vehicles.
Trianel teams with BKW and Luxcara to build a 900 MW lithium-iron-phosphate storage park in Waltrop, the first phase of a complex that could reach 1.5 GW and stabilise the German grid.
Blue Whale Energy partners with UNIGRID to deploy behind-the-meter storage systems adapted to constrained commercial and industrial urban areas in Southeast Asia.
Northvolt, recently placed under judicial administration, has received an indicative offer from a foreign investor to acquire its Swedish assets, signaling a potential imminent restart of its battery production units.
The frame agreement aligns Jinko ESS’s utility-scale storage technology with Metlen’s development pipeline, unlocking more than 3GWh across Chile and Europe while reducing delivery risk for grid operators.
Buffalo-based Viridi has obtained the cETLus mark for its RPS150 system, meeting the UL 9540 standard only days after a public battery fire-containment demonstration.
Tesla is building a giant electricity storage facility in Shanghai, China, signing a $560 million contract to meet growing demands on the urban electricity grid.
Envision Energy signs a turnkey contract with Kallista Energy for a 120 MW / 240 MWh energy storage project in Saleux, Hauts-de-France, marking its entry into France’s stationary battery market.