Nuclear Fusion: Major breakthrough in the UK

The UK's Super-X diverter, designed to remove excessive heat from nuclear fusion reactions, has succeeded in significantly reducing the heat on tokamak materials, paving the way for more sustainable and economically viable fusion power plants, including the UK's planned 2040 nuclear power station.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

Nuclear fusion is booming as the British unveil their new plasma heat diverter. Super-X removes the heat emitted during the fusion process, accelerating the development of nuclear fusion energy.

Nuclear fusion: the new Super-X deflector

TheUK Atomic Energy Authority (UKAEA) has just developed a system for removing the excessive heat produced by nuclear fusion reactions. The Super-X diverter directs hot plasma particles outwards from the reactor (or tokamak). The tokamak will therefore be fitted with a longer exhaust pipe, just like a car.

British nuclear meltdown
The plasma is kept inside the reactor by magnetic repellents in the reactor walls, but its extreme heat is not yet sufficient to stabilize it long enough (Source: Shutterstock; high-energy particles, in the form of plasma, passing through a tokamak-type reactor).

The problem of heat emitted by the plasma state

Although fusion occurs naturally in stars, it is difficult to reproduce on Earth. A reactor has to heat atoms to hundreds of thousands of degrees to extract electrons. The latter are in a plasma state, contained in a magnetic field whose nuclei fuse together to produce a large amount of energy.

However, this intense heat damages the materials in the reactors (or tokamak) used for fusion. For the time being, therefore, it is not possible to integrate tokamaks into power grids. As its materials have to be changed regularly, the operation of power plants would be affected.

Super-X withstands intense heat

The Super-X, which is a world first, makes fusion power plants more resistant to the intense heat of the nuclear reaction. The first tests on this system were carried out in October 2020 as part of the MAST Upgrade experiment at Culham, home to the Joint European Torus tokamak .

Reduce heat by 10

According to the experiments carried out, this technology would even reduce the heat on the tokamak materials by at least 10 times. Dr Andrew Kirk, UKAEA Senior Scientist in charge of the MAST Upgrade project, told Science Focus:

“Super-X reduces exhaust system heat from a blowtorch level to that of a car engine. This could mean that it only needs to be replaced once in the lifetime of a power plant.”

British nuclear meltdown
The Joint European Torus (JET) reactor at Culham, England, is currently the largest in the world (exterior view of the reactor).

Preserving materials and saving money

With this system, tokamak components could last much longer. A situation that would considerably improve the economic viability of commercial fusion power plants and reduce the cost of electricity. This would promote and accelerate the deployment of large-scale fusion.

An opportunity for Britain’s future nuclear fusion power plant

This new technology represents a major opportunity for England. In December 2020, the country announced the construction of its first nuclear fusion power plant. It will be connected to the power grid and should be generating electricity by 2040.

This spherical tokamak for STEP power generation is also under UKAEA supervision. According to Ian Chapman of the UKAEA for Trust my Science, construction is due to start in 2030. Funding of £2 billion would be required.

Technology for spherical tokamaks

British engineers will therefore be able to use the Super-X diverter to develop the STEP device. This new technology is particularly well suited to the spherical tokamak. Professor Ian Chapman, Chief Executive of the UKAEA told Science Focus:

“Without these results, we wouldn’t have been able to pursue the design of a compact machine. If you can’t remove heat, you can’t build such a power plant. So this is an essential result.”

With this new technology, British scientists have lifted one of the major challenges facing fusion. The country is thus one step closer to the large-scale deployment of nuclear fusion power plants. On May 26, British astronaut Tim Peake will perform a plasma test on the machine.

Emission-free, waste-free energy

Experts agree that nuclear fusion could be part of the world’s future energy supply. With no CO2 emissions and no long-lived radioactive waste, this energy is considered clean. It’s also a safer form of energy, thanks to the abundance of fusion fuels: deuterium and tritium.

Sinopec and BASF have reached a mutual recognition agreement on their carbon accounting methods, certified as compliant with both Chinese and international standards, amid growing industrial standardisation efforts.
NorthX Climate Tech strengthens its portfolio by investing in four carbon dioxide removal companies, reinforcing Canada’s position in a rapidly expanding global market.
With dense industrial activity and unique geological potential, Texas is attracting massive investment in carbon capture and storage, reinforced by new federal tax incentives.
GE Vernova and YTL PowerSeraya will assess the feasibility of capturing 90% of CO₂ emissions at a planned 600-megawatt gas-fired power plant in Singapore.
The carbon removal technology sector is expanding rapidly, backed by venture capital and industrial projects, yet high costs remain a significant barrier to scaling.
A Wood Mackenzie study reveals that the EU’s carbon storage capacity will fall more than 40% short of the 2030 targets set under the Net Zero Industry Act.
A bilateral framework governs authorization, transfer and accounting of carbon units from conservation projects, with stricter methodologies and enhanced traceability, likely to affect creditable volumes, prices and contracts. —
Carbon Direct and JPMorganChase have released a guide to help voluntary carbon market stakeholders develop biodiversity-focused projects while meeting carbon reduction criteria.
Japan and Malaysia have signed a preliminary cooperation protocol aiming to establish a regulatory foundation for cross-border carbon dioxide transport as part of future carbon capture and storage projects.
Green Plains has commissioned a carbon capture system in York, Nebraska, marking the first step in an industrial programme integrating CO₂ geological storage across multiple sites.
The price of nature-based carbon credits dropped to $13.30/mtCO2e in October as a 94% surge in September issuances far outpaced corporate demand.
Driven by the energy, heavy industry and power generation sectors, the global carbon capture and storage market could reach $6.6bn by 2034, supported by an annual growth rate of 5.8%.
Article 6 converts carbon credits into a compliance asset, driven by sovereign purchases, domestic markets, and sectoral schemes, with annual demand projected above 700 Mt and supply constrained by timelines, levies, and CA requirements.
The GOCO2 project enters public consultation with six industrial players united around a 375 km network aiming to capture, transport and export 2.2 million tonnes of CO2 per year starting in 2031.
TotalEnergies reduced its stake in the Bifrost CO2 storage project in Denmark, bringing in CarbonVault as an industrial partner and future client of the offshore site located in the North Sea.
The United Kingdom is launching the construction of two industrial carbon capture projects, backed by £9.4bn ($11.47bn) in public funding, with 500 skilled jobs created in the north of the country.
Frontier Infrastructure, in partnership with Gevo and Verity, rolls out an integrated solution combining rail transport, permanent sequestration, and digital CO₂ tracking, targeting over 200 ethanol production sites in North America.
geoLOGIC and Carbon Management Canada launch a free online technical certificate to support industrial sectors involved in carbon capture and storage technologies.
AtmosClear has chosen ExxonMobil to handle the transport and storage of 680,000 tonnes of CO₂ per year from its future biomass energy site at the Port of Baton Rouge, United States.
The Dutch start-up secures €6.8mn to industrialise a DAC electrolyser coupled with hydrogen, targeting sub-$100 per tonne capture and a €1.8mn European grant.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.