Low-carbon ammonia faces technical and financial challenges in shipping

According to the Oxford Institute for Energy Studies, the adoption of low-carbon ammonia in maritime transport faces economic, regulatory, and safety barriers, despite growing international pressure to reduce emissions from the global fleet.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

The maritime transport industry is at a turning point. The majority of the global fleet still runs on fossil fuels, but new rules from the International Maritime Organization (IMO) will impose binding emissions reductions starting in 2028. In this context, low-carbon ammonia—whether produced by electrolysis powered by renewable electricity (“green ammonia”) or by natural gas reforming with carbon capture (“blue ammonia”)—is attracting attention as a future marine fuel. However, its adoption faces a series of financial, technical, and regulatory hurdles that are slowing down its deployment.

Production costs remain prohibitive

The first obstacle to the rise of ammonia as a marine fuel lies in its price. The production cost of green ammonia averages around $730 per tonne, nearly three times the cost of conventional fuels used in shipping today. Even blue ammonia, produced at around $600 per tonne, remains well above the market prices of fossil fuels, estimated at $500/tonne for heavy fuel oil. The gap is even more pronounced when comparing the actual energy provided: ammonia has a lower energy density, which increases the volume required for equivalent propulsion.

Cost reduction prospects largely depend on improvements in electrolyzers and the availability of ultra-low-cost renewable electricity. In regions with abundant solar and wind resources, such as the Middle East, costs could fall to $480/tonne by 2030. However, in Western Europe or Southeast Asia, where electricity remains expensive and renewable production constrained, such competitive prices seem out of reach in the near future.

Uncertainty over infrastructure and investment

Beyond production, transporting and storing ammonia requires dedicated port infrastructure. Few ports today have bunkering facilities suitable for this molecule. Investments to build dedicated terminals, secure pumping systems, and corrosion-resistant tanks are expected to be substantial. Shipowners also need to adapt their engines. Several manufacturers, such as WinGD, are already working on “ammonia-ready” engines, but large-scale deployment remains embryonic.

The cost of retrofitted or new vessels, combined with uncertainty over future demand and regulations, weighs heavily on investment decisions. Financial institutions and shipowners are calling for clear political signals before committing capital to this transition.

Toxicity requires strict safety standards

Ammonia is a toxic and corrosive substance, which poses a major challenge for its use as a fuel. Industrial accident databases list more than one hundred ammonia-related incidents in Europe and the United States, often due to human error or equipment failures. At sea, twelve accidents involving vessels carrying ammonia were recorded between 1978 and 2021, several of them fatal.

Onboard, direct contact or inhalation at concentrations above 300 ppm causes serious injury, while exposure above 5,000 ppm can be fatal. Detection systems, compartment isolation, and ventilation must therefore be reinforced to minimize exposure risks. The International Code of Safety for Ships Using Gases or Other Low-flashpoint Fuels (IGF Code) is expected to be amended by 2026 to incorporate ammonia-specific requirements.

Environmental risks under close watch

Unlike fossil fuels, ammonia does not release carbon dioxide during combustion. However, it produces other concerning pollutants. The formation of nitrogen oxides (NOx) and nitrous oxide (N₂O)—a greenhouse gas nearly 300 times more potent than CO₂—remains a technical challenge. Selective Catalytic Reduction (SCR) systems can limit these emissions, but their effectiveness under large-scale use of ammonia in marine propulsion has yet to be proven.

In addition, leakage or “slip” during storage or combustion raises concerns for air quality and crew health. In marine environments, dissolved ammonia can disrupt ecosystems, cause fish mortality, and contribute to eutrophication in coastal areas.

A regulatory framework under development

The adoption of ammonia as a marine fuel depends not only on technical and economic feasibility but also on international law. In April 2025, the IMO approved a draft “Net-Zero Framework” requiring ships over 5,000 gross tonnes to progressively reduce the carbon intensity of their fuels starting in 2028. The framework will include a system of quotas and penalties, with the possibility of generating or purchasing offset units.

Meanwhile, the European Union has already included shipping in its Emissions Trading System (ETS) and introduced the FuelEU Maritime regulation, which sets a maximum carbon intensity for the energy consumed per ship. If both IMO and EU rules coexist, shipowners may face compliance with two different regimes, complicating fleet management.

Outlook for industry stakeholders

Faced with these constraints, industry players are moving cautiously. Pilot projects are multiplying but remain small in scale. Engine manufacturers continue research, while some strategic ports, particularly in Europe and the Middle East, are considering establishing ammonia bunkering facilities. However, the economic balance of low-carbon ammonia will not be reached without support policies such as tax credits, subsidies for clean hydrogen production, and carbon pricing mechanisms.

For shipowners and investors, the question is no longer whether ammonia will become an option, but under what conditions and on what timeline it will compete with other alternative fuels such as methanol or liquefied natural gas with carbon capture. Strategic choices made in the coming years will determine ammonia’s actual role in the global maritime energy mix.

In Inner Mongolia, Xing’an League is deploying CNY6bn in public funds to build an integrated industrial ecosystem for hydrogen, ammonia and methanol production using local renewable resources.
Despite a drop in sales, thyssenkrupp nucera ends fiscal year 2024/2025 with operating profit, supported by stable electrolysis performance and positive cash flow.
ExxonMobil’s pause of the Baytown project highlights critical commercial gaps and reflects the impact of US federal cuts to low-carbon technologies.
State-owned Chinese group Datang commissions a project combining renewable energy and green hydrogen within a coal-to-chemicals complex in Inner Mongolia, aiming to reduce stranded asset risks while securing future industrial investments.
Möhring Energie Group commits to a green hydrogen and ammonia production project in Mauritania, targeting European markets from 2029, with an initial capacity of 1 GW.
Air Liquide deploys two hydrogen-powered heavy-duty trucks for its logistics operations in the Rotterdam area, marking a step in the integration of low-emission solutions in freight transport.
French hydrogen producer Lhyfe will deliver over 200 tonnes of RFNBO-certified hydrogen to a heavy mobility operator under a multi-year contract effective since 1 November 2025.
Plug Power was selected by Carlton Power to equip three UK-based projects totalling 55 MW, under an agreement subject to a final investment decision expected by early 2026.
Hyroad Energy expands its services to include maintenance, software, and spare parts, offering a comprehensive solution for hydrogen freight operators in the United States.
Air Liquide has launched in Antwerp the first industrial-scale pilot unit for converting ammonia into hydrogen, marking a key technological milestone in the global low-carbon hydrogen supply chain.
Ohmium reached an iridium utilisation rate of 18 GW/ton for its electrolyzers, significantly surpassing the 2030 target, through technological advances that lower hydrogen production costs.
The European Commission opens its first call for hydrogen suppliers with a new matchmaking platform aimed at facilitating investment decisions in the sector.
Ballard Power Systems reports a significant increase in revenue and reduced losses, supported by deep restructuring and positive developments in its main commercial segments.
The inclusion of hydrogen in China’s 15th Five-Year Plan confirms a public investment strategy focused on cost reduction, domestic demand stimulation and geo-economic influence across global markets.
EDF power solutions has inaugurated a hydrogen pilot plant at the Norte Fluminense thermal power plant, with an investment of BRL4.5mn ($882,000), as part of Aneel's R&D programme.
Plug Power plans to generate $275mn by divesting assets and reallocating investments to the data center market, as part of a strategy focused on returns and financial discipline.
GreenH launches construction of three green hydrogen projects in Bodø, Kristiansund and Slagentangen, backed by NOK391mn ($35.86mn) in public funding, aiming to strengthen decarbonised maritime supply along Norway’s coast.
Nel ASA becomes technology provider for the Enova-supported hydrogen sites in Kristiansund and Slagentangen, with a combined minimum capacity of 20 MW.
French hydrogen producer Lhyfe has signed an agreement to supply 90 tonnes of RFNBO-certified hydrogen to a private fuel station operator in Germany for a fleet of buses.
Loblaw and FortisBC are trialling a hydrogen-powered heavy truck between Vancouver and Squamish, marking a step in the integration of low-emission solutions in Canada’s grocery logistics.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.