Indonesia Bets on 10 GW Nuclear to Transform its Energy Mix

Facing growing energy demands, Indonesia has announced an ambitious nuclear program targeting 10 GW capacity by 2040, attracting interest from global industry giants to support this strategic shift towards a low-carbon economy.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

As Indonesia’s energy demand continues to rise in tandem with its rapid economic growth, the country is turning towards nuclear power to secure its long-term energy supply. The Indonesian government plans to develop up to 10 gigawatts (GW) of nuclear capacity by 2040, integrating nuclear power into its national energy portfolio, which is currently heavily dependent on fossil fuels, especially coal and natural gas. This decision is part of a broader policy aimed at diversifying the country’s energy sources, reducing reliance on imported fuels, and achieving ambitious emission-reduction targets set by Jakarta. To implement this plan, Indonesia has initiated in-depth discussions with several major international players in the nuclear sector.

Key International Players Approached

Several global companies have initiated discussions with Indonesian authorities, including Russian nuclear giant Rosatom, China National Nuclear Corporation (CNNC), British firm Rolls-Royce, France’s Électricité de France (EDF), and the American company NuScale Power, a specialist in Small Modular Reactors (SMR). The interest of these international firms primarily revolves around the construction and operation of nuclear power plants adapted to the geographic and seismic specificities of the Indonesian archipelago. While the government has not yet identified precise locations for these future facilities, several regions are currently under consideration. Among the main challenges highlighted are security considerations due to the country’s geographic location on the Pacific Ring of Fire, an area particularly prone to earthquakes.

For now, the discussions remain preliminary, but the government aims to move swiftly to sign the first contracts within the next five years. The Indonesian nuclear regulatory agency, Badan Pengawas Tenaga Nuklir (BAPETEN), is already supervising the initial regulatory processes initiated by some candidates, such as ThorCon Power Indonesia. Recently, ThorCon submitted a licensing application to BAPETEN to deploy an innovative reactor based on Molten Salt Reactor (MSR) technology, viewed as particularly suitable for local environmental constraints.

Energy Strategy by 2040

The Indonesian government’s decision is part of an extensive program aimed at expanding the country’s total energy capacity by an additional 103 GW by 2040. Of this total, nuclear will account for approximately 10%, while renewable energy sources—including solar, wind, geothermal, and biomass—will represent around 75 GW, or about 73% of the new planned capacity. Natural gas will complete this ambitious plan with an additional capacity estimated at 18 GW.

This combined approach would enable Indonesia to sustain its economic growth while gradually reducing the role of coal, which currently accounts for about 60% of national electricity production. By decreasing its dependency on fossil fuel imports, Jakarta not only hopes to secure energy supply but also aims to stabilize energy prices for its industrial and domestic consumers. Indeed, the volatility of international coal and natural gas prices has frequently disrupted the country’s economic planning in recent years.

Economic and Technological Challenges

Although the economic potential of nuclear power is attractive to Indonesia, the actual implementation of this program will need to overcome several crucial milestones. One of the initial challenges will be securing the necessary financing for these major investments, potentially amounting to several tens of billions of dollars over a period of 15 to 20 years. The Indonesian government is currently exploring various financing options, including Public-Private Partnerships (PPP) as well as bilateral agreements with countries possessing advanced nuclear technologies.

The second challenge is technological, involving the need to adapt nuclear infrastructure to the geological and climatic particularities of the Indonesian archipelago. Innovative technologies such as modular reactors and molten salt reactors could offer suitable solutions, reducing both seismic risks and initial construction costs. Foreign companies involved hope to quickly demonstrate the technical and economic viability of their models to gain an advantageous position in this emerging market.

Regional and International Perspectives

Indonesia’s energy transition toward nuclear power could also reshape regional energy dynamics in Southeast Asia. Developing substantial nuclear capacities in the region’s most populous and economically dynamic country could prompt neighboring nations to seriously consider this option as well. This evolution could thus open new opportunities for international suppliers of nuclear equipment and services.

Additionally, the international community will closely observe the progress of this program, particularly Indonesia’s capability to comply with nuclear safety standards and manage radioactive waste disposal risks. Should the Indonesian model prove successful, it could become a case study for other emerging economies facing similar energy and economic challenges, potentially reinforcing the role of nuclear energy in the global energy transition.

A government-commissioned report proposes 47 measures to simplify nuclear regulation, reduce decommissioning costs and accelerate delivery of civilian and military projects.
The Hualong One reactor at Zhangzhou nuclear power plant has been connected to the grid, marking a major milestone in the expansion of China’s civilian nuclear programme.
Russian state nuclear group Rosatom has validated the additive manufacturing of parts for its small modular reactors, marking an industrial first for RITM-200 SMR plant equipment.
California-based Maritime Fusion, backed by Y Combinator and Trucks VC, is betting on a decentralised approach to fusion to target maritime and off-grid applications.
Bayridge Resources secures a majority stake in an advanced uranium project in Canada, strengthening its strategic presence in a geologically promising region.
A significant volume of concrete from the dismantling of the Sizewell A nuclear power plant is being transferred to support the foundations of the Sizewell C project, under a partnership between UK nuclear sector stakeholders.
Korean group KEPCO and UAE-based ENEC have signed two memorandums of understanding to expand their cooperation in civil nuclear energy, artificial intelligence, and digital technologies targeting new international markets.
The Janus programme will deploy micro nuclear power plants across nine military bases to reinforce energy autonomy for critical U.S. Army installations.
The Idaho National Laboratory has started irradiation testing on uranium-zirconium fuel samples from Lightbridge in its experimental reactor, marking a key step toward the industrial validation of advanced nuclear fuel.
NexGen Energy has opened Canadian Nuclear Safety Commission hearings for the final approval of its Rook I uranium project, following more than six years of regulatory process.
Oklo has signed a binding agreement with Siemens Energy to accelerate manufacturing of the energy conversion system for its first advanced nuclear power plant in the United States.
A security document handling incident at the nuclear power plant renews concerns about TEPCO as a key decision on restarting reactors 6 and 7 approaches in Niigata.
An initial civil nuclear cooperation agreement was signed between the United States and Saudi Arabia, prompting calls from the US Congress for strict safeguards to prevent a Middle East arms race.
The launch of the Zhaoyuan nuclear project anchors the Hualong One model inland, illustrating Beijing’s strategy of regulatory normalisation in response to Western technological restrictions.
TRISO-X has started above-ground works on the first U.S. facility dedicated to manufacturing fuel for small modular reactors, marking a key industrial milestone in the deployment of the Xe-100.
The first Russian test rig for the experimental ITER reactor has been delivered to the site in France, marking a major milestone in the international collaboration on nuclear fusion.
A strategic report reveals the industrial and energy potential of Allseas’ offshore small modular reactor, which could create up to 40,000 jobs and reduce investment in the power grid.
Niigata’s governor is expected to approve the restart of one reactor at the Kashiwazaki-Kariwa plant, inactive since the Fukushima accident, reviving a strategic asset for Japan’s energy sector.
Canadian firm Aecon and private developer Norsk Kjernekraft have signed a strategic agreement targeting the deployment of BWRX-300 small modular reactors across several potential locations in Norway.
The South African government has officially lifted the PBMR reactor out of inactivity, launching a public investment programme and transferring the strategic nuclear asset from Eskom to Necsa.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.