IAEA at the forefront of Quantum Technology

IAEA is developing a new project in quantum technology. A complex technology with many applications.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

The IAEA is developing a new project in quantum technology: the use of gas pedals to implant single atoms. A complex technology with potential applications in the medical field. It could, for example, detect malaria, the scourge of southern countries.

The IAEA wants to take up the challenge of ion implantation

Quantum technology has enabled many applications such as lasers, renewable energies or artificial intelligence. However, a second revolution is coming. This is a challenge that the IAEA is serious about meeting.

In the field of quantum technology, gas pedals have been used for a decade to modify and characterize materials. For example, they are very useful in the manufacture of semiconductors present in all our connected objects. Indeed, these allow the implantation of ions to boost their conductivity.

However, the IAEA is not interested in semiconductors, but in quantum technology. This allows an object to be in two states at the same time. Concretely, in the quantum world, a door can be both open and closed.

Thus, there is a major difference between the use of gas pedals for semiconductors and in quantum technology. Andrew Bettiol, associate professor at the National University of Singapore, explains:

“For semiconductors, a large number of ions are implanted to change the electrical properties of silicon, for example. For quantum technologies, we have a very different goal. We want to control the ions at the single ion level. We are not implanting millions or billions of ions; we are implanting exactly one ion.”

It is this challenge of unique ion implantation that the IAEA intends to meet. A complex system that nevertheless has considerable applications in quantum biosensing.

Quantum biosensing to prevent malaria

Scientists discovered nuclear magnetic resonance in 1938. However, it took 30 years for this discovery to find its best known application: MRI imaging. Now, with quantum biosensing, IAEA scientists don’t intend to wait that long.

To understand them, we must address a key concept: that of superposition. This refers to a system that exists in a combination of possible states rather than in a single state. However, this feature is extremely fragile. When a quantum system in superposition interacts in any way with its environment, it collapses.

However, the quantum detection developed by IAEA takes this weakness and turns it into an advantage. If the overlay can be disrupted by a single molecule then it can be turned into a sensor to monitor individual particles.

From then on, it is enough to implant an ion and observe its effect on the superposition. We can therefore track unprecedented biological events with extraordinary precision, as Andrew Bettiol points out:

“This quantum biosensing technique could be applied to visualize or measure processes that operate at the cellular level and have a very small magnetic field, such as the magnetic fields that are produced when neurons operate in our brains.”

IAEA research is currently focused on malaria detection:

“Red blood cells that have been infected with malaria contain tiny magnetic particles that can be detected.”

Sharing knowledge

This technology can therefore prevent diseases that still too often affect the countries of the South. In May 2021, IAEA hosted a four-day training workshop on materials engineering using ion beams.

Aliz Simon, a nuclear physicist working on gas pedals at the IAEA, confirms this desire to share knowledge:

“The IAEA has been at the forefront of coordinating international collaboration, research and development in quantum technologies aligned with national and international initiatives.”

More than 80 participants, half of them from developing countries, attended this virtual workshop.

The UK's Office for Nuclear Regulation has granted formal consent to EDF Energy to decommission the Hinkley Point B nuclear power plant in Somerset, England, following its permanent shutdown in August 2022.
Illinois and New York take significant steps to develop additional nuclear capacity, aiming to strengthen their power generation while diversifying their sources.
US company Intuitive Machines has secured an additional contract to develop compact nuclear technology for lunar missions and extended space infrastructure.
Centrales Nucleares Almaraz-Trillo has officially requested the extension of operations for reactors Almaraz I and II until 2030, challenging the original timeline for the shutdown of Spain’s nuclear fleet.
US-based Amentum has secured strategic roles on a 15-year decommissioning framework in the United Kingdom, potentially worth up to £1.4bn ($1.9bn), through multiple projects at the Sellafield site.
Finland’s Olkiluoto nuclear plant will receive a €90mn ($104mn) loan from the European Investment Bank to upgrade units I and II as part of a programme aiming to extend their operational lifespan.
Electrabel has entrusted Framatome with upgrading the control system of the Tihange 3 reactor, reinforcing Belgium’s nuclear extension strategy launched in 2023.
Hitachi joins Washington and Tokyo in strategic projects to modernise the US grid and back artificial intelligence expansion through nuclear and electrification investments.
NANO Nuclear restructures its Canadian operations under the name True North Nuclear to accelerate regulatory and industrial development of its KRONOS MMR™ microreactor.
Cameco and Brookfield have signed a strategic agreement with the US government to build new Westinghouse reactors, a project valued at a minimum of $80bn, including an unprecedented public participation mechanism.
Talks are underway between Astana and Helsinki to consider the delivery of Kazakh uranium for Finnish nuclear power plants, amid efforts to diversify energy export markets.
NextEra Energy announces an agreement with Google to restart a nuclear plant in Iowa, with operations expected to resume as early as 2029 and full site ownership secured.
The environmental review of TerraPower’s Natrium project in Wyoming has been completed, paving the way for a construction permit for this advanced nuclear reactor.
Santee Cooper has selected Brookfield Asset Management to lead a feasibility study aimed at completing two unfinished AP1000 reactors, without relying on public funds or raising consumer rates.
Endesa, Iberdrola and Naturgy have officially requested the Spanish government to delay the closure of the Almaraz nuclear power plant, originally scheduled for 2028, reigniting the debate on nuclear power's role in the national energy mix.
The reactor vessel for Unit 1 at Egypt’s El Dabaa nuclear plant has been delivered following a 20-day maritime transport from Saint Petersburg, marking a critical milestone in the country’s energy project.
Ontario Power Generation secures CAD3bn ($2.1bn) in public equity financing to construct four modular reactors at Darlington, aiming to ease private sector entry into next-generation nuclear infrastructure.
French developer Newcleo launches a joint venture with Nextchem through a EUR70 mn contract to design the conventional island of its upcoming 200 MW modular nuclear reactors.
NANO Nuclear strengthens its North American strategy by acquiring Global First Power in Canada, securing regulatory rights for its KRONOS MMR™ project at Chalk River.
South Korea becomes the first country to submit a safeguards technical report to the IAEA for a small modular reactor, setting a precedent for early integration of non-proliferation requirements in nuclear design.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.