Valorization of captured CO2: Prospects and obstacles for projects

The use of captured carbon dioxide can improve the profitability of carbon capture projects, but economic, technological and regulatory constraints hinder its widespread adoption.

Share:

Infrastructure de captage du

Subscribe for unlimited access to all the latest energy sector news.

Over 150 multisector articles and analyses every week.

For less than €3/week*

*For an annual commitment

*Engagement annuel à seulement 99 € (au lieu de 149 €), offre valable jusqu'au 30/07/2025 minuit.

The idea of adding value to captured carbon dioxide (CO2), beyond its simple storage, presents itself as a solution for strengthening the economics of carbon capture projects.
By transforming CO2 into value-added industrial products, such as e-fuels or certain construction materials, companies can diversify their revenue streams.
However, at present, less than 5% of carbon capture projects announced worldwide include CO2 recovery strategies.
This limited proportion underlines the economic and technological challenges associated with these approaches.
Energy and industry professionals are evaluating various business models to make carbon capture projects profitable.
Among the options being considered, the sale of carbon credits generated by emissions reductions offers revenue potential on voluntary or regulated markets.
However, these markets are still in their infancy, and their volatility makes long-term planning difficult.
At the same time, projects are exploring the use of captured CO2 to produce e-fuels or chemical intermediates, but the high costs associated with conversion technologies and the supply of green hydrogen limit their competitiveness.

Regulatory and market challenges for CO2 utilization

The current regulatory framework mainly favors geological storage of CO2, which is perceived as a more mature and less costly solution.
For example, the European Union has specific regulations on the use of CO2, but these are limited to e-fuels for aviation, a segment that is still marginal.
The absence of clear incentives and substantial political support for other forms of CO2 use is holding back the emergence of these solutions.
From a technical point of view, the world’s geological storage capacity is estimated at around 15,000 billion tonnes, which reduces the pressure to rapidly develop recovery solutions.
What’s more, the cost of producing synthetic fuels from captured CO2 is still too high to compete with conventional fossil fuel alternatives.
Developing more cost-effective technologies and stable markets for decarbonized products remains a priority to overcome these challenges.

Ways of recovering captured CO2 and their limitations

Several CO2 recovery technologies are under development or already available on the market, but their adoption is slow.
One possible approach is mineralization, which involves transforming CO2 into building materials such as limestone.
This method is technically mature and can be competitive in certain contexts, but it does not yet offer sufficient scale of application to have a significant impact on carbon capture targets.
Another option is the use of CO2 in the production of e-fuels for the shipping and aviation sectors.
This approach could compensate for biofuel supply limitations, but it remains hampered by high costs and dependence on green hydrogen and renewable energies.
The prospects of direct competitiveness with traditional fuels remain uncertain before 2040, making these options still unattractive to investors.

Prerequisites for increased adoption and profitability

For the use of captured CO2 to become a viable and widely adopted option, several conditions must be met.
Firstly, a significant reduction in technological costs, particularly with regard to green hydrogen production, is essential.
Secondly, more favorable regulatory frameworks and more robust support policies could encourage innovation and attract investment in this field.
Furthermore, the development of viable markets for CO2-derived products, such as e-fuels or decarbonized building materials, would require increased demand and appropriate financial incentives.
Opportunities also exist in the co-feeding of existing industrial units, such as methanol production or cement manufacturing.
These applications enable partial decarbonization without requiring large capital investments.
However, limitations in terms of scope and production volume make it difficult to achieve full decarbonization with these approaches, and further innovation is needed to maximize their impact.
Current policies must therefore evolve to include specific incentives for CO2 recovery projects, in order to encourage wider adoption of these technologies and boost the competitiveness of the carbon capture sector.

Alberta carbon credits trade at 74% below federal price as inventory reaches three years of surplus, raising questions about regulatory equivalence before 2026 review.
The integration of carbon capture credits into the British trading system by 2029 raises questions about the price gap with allowances and limited supply capacity.
Carbon Ridge reaches a major milestone by deploying the first centrifugal carbon capture technology on a Scorpio Tankers oil tanker, alongside a new funding round exceeding $20mn.
Elimini and HOFOR join forces to transform the AMV4 unit at Amagerværket with a BECCS project, aiming for large-scale CO₂ capture and the creation of certified carbon credits. —
Carbonova receives $3.20mn from the Advanced Materials Challenge programme to launch the first commercial demonstration unit for carbon nanofibers in Calgary, accelerating industrial development in advanced materials.
Chestnut Carbon has secured a non-recourse loan of $210mn led by J.P. Morgan, marking a significant step for afforestation project financing and the growth of the U.S. voluntary carbon market.
TotalEnergies seals partnership with NativState to develop thirteen forestry management projects across 100,000 hectares, providing an economic alternative to intensive timber harvesting for hundreds of private landowners.
Drax’s generation site recorded a 16% rise in its emissions, consolidating its position as the UK’s main emitter, according to analysis published by think tank Ember.
Graphano Energy announces an initial mineral resource estimate for its Lac Saguay graphite properties in Québec, highlighting immediate development potential near major transport routes, supported by independent analyses.
Carbon2Nature, a subsidiary of Iberdrola, partners with law firm Uría Menéndez on a 90-hectare reforestation project in Sierra de Francia, targeting carbon footprint compensation for the legal sector.
North Sea Farmers has carried out the very first commercial-scale seaweed harvest in an offshore wind farm, supported by funding from the Amazon Right Now climate fund.
The UK's National Wealth Fund participates in a GBP 59.6 million funding round to finance a COâ‚‚ capture pipeline for the cement and lime industry, targeting a final investment decision by 2028.
The Bayou Bend project, led by Chevron, Equinor, and TotalEnergies, aims to become a major hub for industrial carbon dioxide storage on the US Gulf Coast, with initial phases already completed.
US-based Chloris Geospatial has raised $8.5M from international investors to expand its satellite-based forest monitoring capabilities and strengthen its commercial position in Europe, addressing growing demand in the carbon market.
The federal government is funding three carbon capture, utilisation and storage initiatives in Alberta, strengthening national energy competitiveness and preparing infrastructure aligned with long-term emission-reduction goals.
Donald Trump approves a substantial increase in US tax credits aimed at carbon capture and utilization in oil projects, significantly reshaping economic outlooks for the energy sector and drawing attention from specialized investors.
The European Union unveils a plan aimed at protecting its exporting industries from rising carbon policy costs, using revenue generated from its border adjustment mechanism.
Colombia is experiencing a significant drop in voluntary carbon credit prices due to a major oversupply, destabilizing the financial balance of associated communities and projects.
France and Norway sign an agreement facilitating the international transport of COâ‚‚ to offshore geological storage facilities, notably through the Northern Lights project and the COâ‚‚ Highway Europe infrastructure.
Frontier Infrastructure Holdings has signed an offtake agreement with manager Wild Assets for up to 120 000 tonnes of BECCS credits, underscoring the voluntary market’s growing appetite for traceable, high-permanence carbon removals.