Tokamak Energy: Towards fusion energy in 2030

Tokamak Energy is making progress in mastering nuclear fusion, thanks to an innovative laser technology that promises clean, affordable energy for the 2030s.

Share:

Tokamak Energy fusion nucléaire laser

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

Nuclear fusion requires extreme conditions, including plasma temperatures in excess of 100 million degrees Celsius. To achieve and maintain these conditions, Tokamak Energy is developing an innovative laser system capable of accurately measuring the density of hydrogen fuel. This precision is vital to stabilize the plasma and ensure efficient fusion. The device, currently being tested in Oxford, represents a major step towards controlling the fusion process.

The crucial importance of plasma density

Tadas Pyragius, physicist at Tokamak Energy, stresses that understanding and controlling plasma density is essential to the success of nuclear fusion. A laser beam passes through the plasma to measure this density, providing key information for maintaining fusion conditions. This technique not only ensures the stability of the process, but also its long-term economic viability. Innovations in laser diagnostics pave the way for optimized fusion management.

Combining technologies for a successful merger

To complement its interferometer system, last year Tokamak Energy integrated a Thomson diffusion laser diagnostic system on its ST40 tokamak. This device provides detailed readings of plasma temperature and density at specific locations, complementing the average density measurements offered by the new interferometer. The combination of these technologies significantly increases the precision of plasma control, a further step towards commercial nuclear fusion. These technological advances are crucial to the future development of fusion power plants.

A vision for the future of fusion energy

Tokamak Energy’s aim is to demonstrate the full potential of high-temperature superconducting magnets with its ST80-HTS prototype, scheduled for 2026 at Culham. This pioneering project aims to inform the design of the ST-E1 pilot plant, which is expected to generate up to 200 MW of net electrical power in the early 2030s. The success of ST-E1 would mark a decisive step towards the deployment of 500 MW commercial fusion power plants in the 2030s. Nuclear fusion thus represents a potentially inexhaustible and clean source of energy for the future.

Tokamak Energy’s ST40 device has already reached melting temperatures of 100 million degrees Celsius, a record for a compact spherical tokamak. These experiments, essential for the future specifications of the ST80-HTS and ST-E1 models, demonstrate Tokamak Energy’s ability to push back the boundaries of fusion technology. However, even if the advances made by Tokamak Energy bring humanity closer to a revolutionary energy source, the road to a commercially viable fusion power plant is fraught with technical and scientific challenges.

Amazon unveils new visuals of its upcoming nuclear site, marking a key step in its partnership with X-energy to deploy up to 960 MW of modular nuclear capacity in Washington state.
Canadian uranium producer NexGen Energy has completed a A$1bn ($639mn) equity raise split between North American and Australian markets to support the development of its Rook I project.
Tokyo Electric Power Company Holdings is examining the permanent closure of units 1 and 2 at the Kashiwazaki-Kariwa nuclear power plant, the oldest at the site, while continuing efforts to restart unit 6.
The formal expiration of the 2015 nuclear deal with Iran comes as international sanctions have already been reinstated and diplomatic negotiations remain stalled.
Oklo, newcleo and Blykalla partner to develop advanced nuclear fuel infrastructure in the United States, backed by a planned $2bn investment.
enCore Energy has identified three new uranium roll fronts at its Alta Mesa project, with ongoing drilling aimed at defining their extent and accelerating development work.
California-based Radiant will build its first microreactor production facility in Oak Ridge, on a former Manhattan Project site, with production targeted at 50 units per year by 2028.
EDF restarted the Flamanville EPR reactor after repairing non-compliant valves, delaying the target of reaching full power output of 1,620 MW until the end of autumn.
Nano Nuclear and the University of Illinois will begin drilling operations for the KRONOS MMR™ reactor on October 24, marking a key step toward commercialisation of the nuclear project on the Urbana-Champaign campus.
Natura Resources is finalising construction of the MSR-1, an advanced liquid-fuel nuclear reactor, with a planned launch in 2026 on the Abilene Christian University campus.
JPMorganChase commits $10bn in direct investments as part of a $1.5tn plan to boost energy independence and strategic technologies, including next-generation nuclear power.
A roadmap under development aims to establish regulatory and technical foundations for the deployment of small modular reactors, with the goal of strengthening national energy security and attracting private capital.
EDF adjusts its 2025 nuclear production forecast to between 365 and 375 TWh, supported by the performance of its industrial programme START 2025 focused on maintenance efficiency.
The United Nations nuclear agency is urging Ukraine and Russia to establish a local ceasefire to repair damaged power lines at the Zaporizhzhia plant, which remains on alert after losing all external power supply.
Deep Isolation is calling on First Mover States to incorporate radioactive waste management into their joint strategy to ensure the industrial viability of new nuclear reactors.
Canada’s nuclear regulator has approved the launch of a new building that will store used steam generators from Bruce Power's refurbishment programme.
Costain has been selected to upgrade essential utilities at the Sellafield nuclear site under a contract worth up to £1bn over fifteen years.
A 5,000-megawatt nuclear programme will be launched by the South African government with NECSA to support national electricity supply and reduce power cuts.
Canada’s IsoEnergy will acquire Australia’s Toro Energy for AUD75mn ($49mn), creating a diversified uranium production platform with assets across Australia, Canada and the United States.
The upcoming Sizewell C nuclear power plant secures its fuel supply through agreements signed with Urenco and Framatome, marking a key step in strengthening the United Kingdom’s long-term energy stability.

All the latest energy news, all the time

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.