Hydrogen Storage in Salt Caverns: Opportunities and Challenges for Industry

Engie validates hydrogen storage in salt caverns, opening a strategic market for industrial firms and energy producers facing the rise of renewable gases and the need to diversify technical solutions to meet increasing demand.

Partagez:

The feasibility of storing hydrogen in salt caverns has been demonstrated by the Hypster project (Hydrogen Pilot Storage for Large Ecosystem Replication), led by French energy group Engie through its subsidiary Storengy. This method, confirmed after four months of intensive testing involving 3 tonnes of hydrogen and 100 injection-withdrawal cycles, verifies the industrial viability of a previously experimental technology. Traditionally used for seasonal storage of natural gas, these salt caverns can now potentially meet more immediate market needs by offering flexible and rapid management of injected and withdrawn hydrogen volumes. Engie aims to leverage these findings to support significant growth anticipated in the hydrogen market by 2035.

Strategic Storage and New Technical Constraints

Salt caverns offer optimal sealing capabilities and responsiveness compared to competing methods such as porous reservoir storage, whose primary drawback is the difficulty of continuously ensuring hydrogen containment. As hydrogen is particularly volatile, its storage requires highly secure infrastructure and constant monitoring for potential leaks. The project conducted in Etrez, France’s leading salt cavern storage facility, accurately measured the chemical reaction between salt and hydrogen, confirming the technical performance necessary for future commercial use. Storengy is also adapting existing infrastructure, particularly compressors, to accommodate the specific properties of hydrogen, which is lighter and more reactive than natural gas.

An Emerging Market Structure

However, salt cavern technology is not alone in addressing hydrogen-related industrial challenges. Other competing technological approaches are currently under development, including storage solutions involving high-pressure metallic tanks and cryogenic liquid hydrogen storage at extremely low temperatures. These alternatives offer distinct benefits, such as greater mobility and the possibility of being located near consumption sites, but also entail high costs and significant energy requirements to maintain optimal storage conditions. Storage in ammonia or methanol forms, facilitating easier integration into existing infrastructure, also represents a credible alternative being explored by various industrial groups.

An Industrial Lever for Energy Flexibility

Underground salt cavern storage nonetheless presents the advantage of adaptability to both daily and seasonal consumption peaks. This flexibility could become crucial as intermittent renewable energies, such as solar and wind, assume a growing share of the European energy mix. Stored hydrogen could therefore not only serve direct industrial needs, such as steel production, refineries, and heavy mobility but also act as a buffer solution to stabilize electrical grids and manage renewable energy intermittency. The establishment of efficient storage infrastructure is thus viewed by sector experts as a major economic challenge in the short term.

Regulatory Framework Awaiting Clarification

For widespread adoption of this technology, regulatory clarity at the European level is essential. The European Commission, identifying hydrogen infrastructure as strategic, expects to implement specific regulations for underground storage by 2033. Discussions are already underway with industry leaders to precisely outline the technical and safety constraints to incorporate into future regulations. Engie actively advocates for rapid and clear legislative guidelines, essential to attract investors and ensure large-scale industrial deployment of these technologies.

The entire energy sector now anticipates the transformation of these feasibility demonstrations into concrete economic opportunities, contingent upon essential cost reductions in producing and storing renewable hydrogen.

The SA-H2 fund, supported by international partnerships and local institutional backing, mobilises 37 million USD to develop export-oriented green hydrogen from South Africa, with an initial concrete project announced.
Turbotech reports successful combustion testing of a hydrogen turboprop, developed through digital simulation with Ansys, marking an industrial milestone in light aircraft using alternative fuel.
France Hydrogène responds to the Cour des Comptes report published on June 5, criticising an incomplete reading of updated targets and the economic impacts of decarbonised hydrogen development.
The Belfort Commercial Court has opened a judicial reorganisation procedure for McPhy, while a renewed call for tenders for its asset sale is now set to close on 13 June.
Plug Power CFO Paul Middleton acquired 650,000 shares on the market, affirming his support for the long-term strategy of the hydrogen-focused company.
The Canadian government is funding an initiative to support 40 SMEs in British Columbia’s hydrogen sector, aiming to increase foreign investment and expand international market share.
Developer CWP Global has paused its $40 billion AMAN project in Mauritania due to a lack of buyers for green ammonia despite favourable local conditions.
A study reveals that the profitability of African green hydrogen exports to the European Union depends on political support from Europe, despite the abundance of ongoing projects on the continent.
Plug Power expands its partnership with Allied Green through a new 2 GW electrolyzer deal tied to a $5.5bn chemical plant in Uzbekistan.
Stargate Hydrogen launches 140 MW factory in Estonia with modular expansion model amid cautious hydrogen investment climate.
The European Commission is considering legal action over RED III delays, as regulatory uncertainty slows renewable hydrogen projects and Union-wide investment.
The Cour des comptes warns of the gap between France’s hydrogen ambitions and the reality of funding and available industrial capacity.
Ballard Power Systems will supply 12 fuel cell modules to Sierra Northern Railway to convert three diesel locomotives into hydrogen-powered units. Delivery is expected during 2025.
Vallourec announces the official qualification of its vertical hydrogen storage solution Delphy by DNV, marking a decisive step towards the commercialisation of this innovative technology.
Chinese group Envision Energy has signed a strategic agreement with Marubeni to supply green ammonia, marking a major milestone in energy trade between China and Japan.
HDF Energy signed two protocols with Indonesian public partners to support the financing and deployment of 23 green hydrogen power plants during Emmanuel Macron’s state visit to Jakarta.
Plug Power’s plant in Georgia reached a record output of 300 tonnes of liquid hydrogen in April, marking a key milestone in the company’s industrial deployment of its GenEco electrolyser technology.
Austrian group OMV has confirmed a major investment in a green hydrogen production unit in Lower Austria, aimed at securing its Schwechat refinery operations by the end of 2027.
With 80% of its projects still in early stages, Australia struggles to realise its hydrogen ambitions, according to Wood Mackenzie, which warns of lost competitiveness against Europe and the Middle East.
RIC Energy and Siemens have signed an agreement to develop industrial projects in Spain focused on renewable hydrogen, green ammonia and e-fuels, including technical solutions and financing mechanisms.