Hydrogen Storage in Salt Caverns: Opportunities and Challenges for Industry

Engie validates hydrogen storage in salt caverns, opening a strategic market for industrial firms and energy producers facing the rise of renewable gases and the need to diversify technical solutions to meet increasing demand.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

The feasibility of storing hydrogen in salt caverns has been demonstrated by the Hypster project (Hydrogen Pilot Storage for Large Ecosystem Replication), led by French energy group Engie through its subsidiary Storengy. This method, confirmed after four months of intensive testing involving 3 tonnes of hydrogen and 100 injection-withdrawal cycles, verifies the industrial viability of a previously experimental technology. Traditionally used for seasonal storage of natural gas, these salt caverns can now potentially meet more immediate market needs by offering flexible and rapid management of injected and withdrawn hydrogen volumes. Engie aims to leverage these findings to support significant growth anticipated in the hydrogen market by 2035.

Strategic Storage and New Technical Constraints

Salt caverns offer optimal sealing capabilities and responsiveness compared to competing methods such as porous reservoir storage, whose primary drawback is the difficulty of continuously ensuring hydrogen containment. As hydrogen is particularly volatile, its storage requires highly secure infrastructure and constant monitoring for potential leaks. The project conducted in Etrez, France’s leading salt cavern storage facility, accurately measured the chemical reaction between salt and hydrogen, confirming the technical performance necessary for future commercial use. Storengy is also adapting existing infrastructure, particularly compressors, to accommodate the specific properties of hydrogen, which is lighter and more reactive than natural gas.

An Emerging Market Structure

However, salt cavern technology is not alone in addressing hydrogen-related industrial challenges. Other competing technological approaches are currently under development, including storage solutions involving high-pressure metallic tanks and cryogenic liquid hydrogen storage at extremely low temperatures. These alternatives offer distinct benefits, such as greater mobility and the possibility of being located near consumption sites, but also entail high costs and significant energy requirements to maintain optimal storage conditions. Storage in ammonia or methanol forms, facilitating easier integration into existing infrastructure, also represents a credible alternative being explored by various industrial groups.

An Industrial Lever for Energy Flexibility

Underground salt cavern storage nonetheless presents the advantage of adaptability to both daily and seasonal consumption peaks. This flexibility could become crucial as intermittent renewable energies, such as solar and wind, assume a growing share of the European energy mix. Stored hydrogen could therefore not only serve direct industrial needs, such as steel production, refineries, and heavy mobility but also act as a buffer solution to stabilize electrical grids and manage renewable energy intermittency. The establishment of efficient storage infrastructure is thus viewed by sector experts as a major economic challenge in the short term.

Regulatory Framework Awaiting Clarification

For widespread adoption of this technology, regulatory clarity at the European level is essential. The European Commission, identifying hydrogen infrastructure as strategic, expects to implement specific regulations for underground storage by 2033. Discussions are already underway with industry leaders to precisely outline the technical and safety constraints to incorporate into future regulations. Engie actively advocates for rapid and clear legislative guidelines, essential to attract investors and ensure large-scale industrial deployment of these technologies.

The entire energy sector now anticipates the transformation of these feasibility demonstrations into concrete economic opportunities, contingent upon essential cost reductions in producing and storing renewable hydrogen.

Next Hydrogen completes a $20.7mn private placement led by Smoothwater Capital, boosting its ability to commercialise alkaline electrolysers at scale and altering the company’s control structure.
Primary Hydrogen plans to launch its initial drilling programme at the Wicheeda North site upon receiving its permit in early 2026, while restructuring its internal exploration functions.
Gasunie and Thyssengas have signed an agreement to convert existing gas pipelines into hydrogen conduits between the Netherlands and Germany, facilitating integration of Dutch ports with German industrial regions.
The conditional power supply agreement for the Holmaneset project is extended to 2029, covering a ten-year electricity delivery period, as Fortescue continues feasibility studies.
HDF Energy partners with ABB to design a multi-megawatt hydrogen fuel cell system for vessel propulsion and auxiliary power, strengthening their position in the global maritime market.
SONATRACH continues its integration strategy into the green hydrogen market, with the support of European partners, through the Algeria to Europe Hydrogen Alliance (ALTEH2A) and the SoutH2 Corridor, aimed at supplying Europe with clean energy.
Operator GASCADE has converted 400 kilometres of gas pipelines into a strategic hydrogen corridor between the Baltic Sea and Saxony-Anhalt, now operational.
Lummus Technology and Advanced Ionics have started construction of a pilot unit in Pasadena to test a new high-efficiency electrolysis technology, marking a step toward large-scale green hydrogen production.
Nel ASA launches the industrial phase of its pressurised alkaline technology, with an initial 1 GW production capacity and EU support of up to EUR135mn ($146mn).
Peregrine Hydrogen and Tasmania Energy Metals have signed a letter of intent to install an innovative electrolysis technology at the future nickel processing site in Bell Bay, Tasmania.
Elemental Clean Fuels will develop a 10-megawatt green hydrogen production facility in Kamloops, in partnership with Sc.wén̓wen Economic Development and Kruger Kamloops Pulp L.P., to replace part of the natural gas used at the industrial site.
Driven by green hydrogen demand and state-backed industrial plans, the global electrolyser market could reach $42.4bn by 2034, according to the latest forecast by Future Market Insights.
Driven by mobility and alkaline electrolysis, the global green hydrogen market is projected to grow at a rate of 60 % annually, reaching $74.81bn in 2032 from $2.79bn in 2025.
Plug Power will supply a 5MW PEM electrolyser to Hy2gen’s Sunrhyse project in Signes, marking a key step in expanding RFNBO-certified hydrogen in southern France.
The cross-border hydrogen transport network HY4Link receives recognition from the European Commission as a project of common interest, unlocking access to funding and integration into Europe’s energy infrastructure.
The withdrawal of Stellantis weakens Symbio, which is forced to drastically reduce its workforce at the Saint-Fons plant, despite significant industrial investment backed by both public and private stakeholders.
German steelmaker Thyssenkrupp plans to cut 11,000 jobs and reduce capacity by 25% as a condition to enable the sale of its steel division to India’s Jindal Steel.
Snam strengthens its position in hydrogen and CO₂ infrastructure with EU-backed SoutH2 corridor and Ravenna hub, both included in the 2025 list of strategic priorities for the European Union.
Driven by industrial demand and integration with renewable energy, the electrolyzer market is projected to grow 38.2% annually, rising from $2.08bn in 2025 to $14.48bn by 2031.
BrightHy Solutions, a subsidiary of Fusion Fuel, has signed a €1.7mn contract to supply a hydrogen refuelling station and electrolyser to a construction company operating in Southern Europe.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.