Hydrogen Storage in Salt Caverns: Opportunities and Challenges for Industry

Engie validates hydrogen storage in salt caverns, opening a strategic market for industrial firms and energy producers facing the rise of renewable gases and the need to diversify technical solutions to meet increasing demand.

Share:

Comprehensive energy news coverage, updated nonstop

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

7-Day Pass

Up to 50 articles accessible for 7 days, with no automatic renewal

3 €/week*

FREE ACCOUNT

3 articles/month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 30,000 articles • 150+ analyses per week

The feasibility of storing hydrogen in salt caverns has been demonstrated by the Hypster project (Hydrogen Pilot Storage for Large Ecosystem Replication), led by French energy group Engie through its subsidiary Storengy. This method, confirmed after four months of intensive testing involving 3 tonnes of hydrogen and 100 injection-withdrawal cycles, verifies the industrial viability of a previously experimental technology. Traditionally used for seasonal storage of natural gas, these salt caverns can now potentially meet more immediate market needs by offering flexible and rapid management of injected and withdrawn hydrogen volumes. Engie aims to leverage these findings to support significant growth anticipated in the hydrogen market by 2035.

Strategic Storage and New Technical Constraints

Salt caverns offer optimal sealing capabilities and responsiveness compared to competing methods such as porous reservoir storage, whose primary drawback is the difficulty of continuously ensuring hydrogen containment. As hydrogen is particularly volatile, its storage requires highly secure infrastructure and constant monitoring for potential leaks. The project conducted in Etrez, France’s leading salt cavern storage facility, accurately measured the chemical reaction between salt and hydrogen, confirming the technical performance necessary for future commercial use. Storengy is also adapting existing infrastructure, particularly compressors, to accommodate the specific properties of hydrogen, which is lighter and more reactive than natural gas.

An Emerging Market Structure

However, salt cavern technology is not alone in addressing hydrogen-related industrial challenges. Other competing technological approaches are currently under development, including storage solutions involving high-pressure metallic tanks and cryogenic liquid hydrogen storage at extremely low temperatures. These alternatives offer distinct benefits, such as greater mobility and the possibility of being located near consumption sites, but also entail high costs and significant energy requirements to maintain optimal storage conditions. Storage in ammonia or methanol forms, facilitating easier integration into existing infrastructure, also represents a credible alternative being explored by various industrial groups.

An Industrial Lever for Energy Flexibility

Underground salt cavern storage nonetheless presents the advantage of adaptability to both daily and seasonal consumption peaks. This flexibility could become crucial as intermittent renewable energies, such as solar and wind, assume a growing share of the European energy mix. Stored hydrogen could therefore not only serve direct industrial needs, such as steel production, refineries, and heavy mobility but also act as a buffer solution to stabilize electrical grids and manage renewable energy intermittency. The establishment of efficient storage infrastructure is thus viewed by sector experts as a major economic challenge in the short term.

Regulatory Framework Awaiting Clarification

For widespread adoption of this technology, regulatory clarity at the European level is essential. The European Commission, identifying hydrogen infrastructure as strategic, expects to implement specific regulations for underground storage by 2033. Discussions are already underway with industry leaders to precisely outline the technical and safety constraints to incorporate into future regulations. Engie actively advocates for rapid and clear legislative guidelines, essential to attract investors and ensure large-scale industrial deployment of these technologies.

The entire energy sector now anticipates the transformation of these feasibility demonstrations into concrete economic opportunities, contingent upon essential cost reductions in producing and storing renewable hydrogen.

Plug Power has announced the appointment of Jose Luis Crespo as President effective October 10, before assuming the role of Chief Executive Officer once the company publishes its annual report, expected in March 2026.
Plug Power finalised a deal with an institutional investor to raise $370mn through the immediate exercise of warrants, with the possibility of securing an additional $1.4bn if new warrants are exercised.
Air Liquide announces a $50mn investment to strengthen its hydrogen network on the US Gulf Coast, following long-term contracts signed with two major American refiners.
Global demand for industrial gases will grow on the back of hydrogen expansion, carbon capture technologies, and advanced use in healthcare, electronics, and low-carbon fuel manufacturing.
Green ammonia reaches a new industrial milestone with 428 active projects and over $11bn in investments, highlighting accelerated sector growth across Asia, the Middle East, Europe and the Americas.
Nel Hydrogen US will supply a containerised electrolyser to H2 Energy for a hydrogen production facility commissioned by the Association for Waste Disposal in Buchs, Switzerland.
UK-based manufacturer ITM Power has signed an engineering contract for a green hydrogen project shortlisted under the country's second Hydrogen Allocation Round.
Agfa strengthens its industrial position with the launch of a ZIRFON membrane production site for electrolyzers, backed by a €11mn European subsidy.
Driven by Air Liquide and SEGULA Technologies, the ROAD TRHYP project aims to lower hydrogen transport costs and improve safety through a series of technical innovations by 2030.
Qair obtains structured bank financing of €55mn for its Hyd’Occ ecosystem, integrating renewable hydrogen production and distribution in Occitanie, with commissioning scheduled before the end of 2025.
Swedish firm Metacon has secured a EUR7.1mn ($7.7mn) contract to deliver a 7.5 MW electrolysis plant to Elektra Power SRL, marking its operational entry into the Romanian market.
The Clean Hydrogen Partnership has closed its first call for Project Development Assistance (PDA), totaling 36 applications from 18 countries. Results are expected in October, with support starting in November.
Kandla port plans a 150,000-ton-per-year integrated renewable methanol unit, targeting the growing fleet of compliant vessels on the Singapore-Rotterdam maritime route.
OMV is investing several hundred million euros in a 140 MW electrolysis unit in Austria, set to produce 23,000 tonnes of green hydrogen annually to supply its Schwechat refinery.
Jolt Green Chemical Industries appoints Dyar Al-Safwah to engineer a high-performance electrode facility at King Salman Energy Park, backed by the Ministry of Energy.
With the certification of three new sites, Lhyfe takes the lead in the European RFNBO hydrogen market, reaching 21 MW of installed capacity across France and Germany.
VINSSEN becomes a central player in designing the world’s first commercial transport vessel fully powered by a fuel cell using ammonia as a hydrogen carrier.
The global hydrogen production market is expected to more than double by 2035, supported by technological advances and growing demand from transport, heavy industry and decarbonised energy systems.
Accelera will supply a 5MW electrolysis system at the Port of Schweinfurt, aiming to produce 2.2 tonnes of green hydrogen daily for industrial and logistics applications in central Germany.
The Sauda municipal council has approved the zoning plan for the Iverson project, paving the way for a 270 MW electrolysis facility powered by hydropower to produce renewable ammonia.

All the latest energy news, all the time

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access - Archives included - Pro invoice

7 DAY PASS

Up to 50 items can be consulted for 7 days,
without automatic renewal

3€/week*

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.