Germany’s Marvel Fusion to develop a demonstrator in the United States

In a bold move, Marvel Fusion and the University of Colorado are joining forces to propel laser nuclear fusion research, offering a promising and innovative alternative to meet the world's energy needs while minimizing radioactive waste, and highlighting Europe's crucial place in this evolving energy future.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

Marvel Fusion, a German start-up exploring laser-based nuclear fusion, will partner with the American University of Colorado to develop a demonstrator to prove the technology’s “feasibility”, the company announced in a press release on Monday.

Innovative Partnership to Accelerate Nuclear Laser Fusion Research

This technology is designed to generate electricity without highly radioactive waste. The $150 million investment, in the form of a “private-public partnership”, will “support the construction of a next-generation high-density laser and inertial fusion research facility,” according to the joint release.

The partnership, whose breakdown between private and public players was not disclosed, “will serve as a global standard for laser fusion research, accelerating the development of a safe, clean and reliable energy source”, said Moritz von der Linden, CEO of Marvel Fusion, quoted in the release.

Alongside this super-powerful facility, “the only one of its kind in the world”, Marvel Fusion will build a demonstrator to “prove the feasibility of large-scale” laser nuclear fusion technology, with commissioning planned for 2027, according to the press release. The idea is to present “the efficient technology required to power a power plant in the future”, explained Mr von der Linden. Based in Munich. the private start-up intends to start producing energy using laser nuclear fusion around 2030.

“Wind and solar are an important source of tangible energy, but they won’t be enough to meet global energy demand. They therefore need to be supplemented by a high-density energy source, which is fusion,” the executive told AFP.

Innovative Partnership in Nuclear Fusion: The Union between USA and Europe

Nuclear fusion, whether magnetic or laser-based, is being hailed as an Eldorado by its promoters, who claim it will enable them to produce gigantic quantities of energy while avoiding the shortcomings of current power plants. What is long-lived high-level radioactive waste and the risk of nuclear accidents. If fission consists of splitting the nucleus of a heavy atom, releasing energy in power plants. Nuclear fusion, on the other hand, is the fusion of two light nuclei.

In this field, the company is making inroads in the United States, while emphasizing the role that Europe could play in the future thanks to the existence of a “solid base of industrial partners who will be invaluable”. It also intends to pursue its current initiatives in Europe, notably with experiments carried out at the ELI-NP laser center in Romania in partnership with Thalès, and with the CALA laser center at Munich’s Ludwig-Maximilian University. In March, the company announced that it was seeking 350 million euros in funding from France to build an experimental reactor.

“There’s a lot of interest in this technology in France,” says the CEO, pointing out that Paris has included it in its France 2030 call for innovative projects.

Belarus commits major public investment to add a third reactor at the Ostrovets plant and initiates studies for a second nuclear site to support national energy demand.
Framatome’s accident-tolerant fuel prototype has completed a second 24-month cycle in a commercial nuclear reactor in the United States, paving the way for a third phase of industrial testing.
The Wylfa site in Wales will host three Rolls-Royce small modular reactors from 2026, marking a strategic investment in the UK’s nuclear expansion.
EDF confirmed that the Flamanville EPR has reached a major milestone, while planning a nearly year-long shutdown in 2026 for extensive regulatory inspections and key component replacement.
EDF is opening access to its long-term nuclear supply contracts to companies consuming more than 7 GWh per year, an adjustment driven by the gradual end of the Arenh mechanism.
South Korean authorities have approved the continued operation of the Kori 2 reactor for an additional eight years, marking a key milestone in the national nuclear strategy.
A public-private consortium is developing a 5 MW thermal microreactor designed to operate without refuelling for ten years, marking a strategic step in Brazil's nuclear innovation efforts.
EDF has announced that the Flamanville EPR reactor is now operating at 80% of its capacity. The target of reaching full output by the end of autumn remains confirmed by the utility.
The accelerated approval of the Aurora facility’s nuclear safety plan marks a strategic milestone in rebuilding a domestic nuclear fuel production line in the United States.
The Industrikraft consortium will invest SEK400mn ($42.2mn) to become a shareholder in Videberg Kraft, marking a new phase in Sweden’s nuclear project led by Vattenfall on the Värö Peninsula.
MVM Group has signed an agreement with Westinghouse to secure VVER-440 fuel supplies from 2028, reducing its reliance on Russia and strengthening nuclear cooperation between Budapest and Washington.
The delivery of nuclear fuel by Russian subsidiary TVEL to the Da Lat research reactor marks a key step in strengthening the nuclear commercial partnership between Moscow and Hanoi.
US supplier X-energy has formalised a graphite supply contract with Japan's Toyo Tanso for the construction of its first four small modular reactors, in partnership with Dow and backed by the US Department of Energy.
US-based Enveniam has signed an agreement with LIS Technologies Inc. to oversee the design and construction of a new laser-based uranium enrichment facility on American soil.
Faced with shorter approval timelines, several European nuclear firms, including Newcleo, Orano and Urenco, are considering relocating key industrial investments to the United States.
A consortium led by Swedish giants such as ABB, SSAB and Volvo will invest SEK400mn to support the development of small modular nuclear reactors through a strategic partnership with Vattenfall.
Russia and India are preparing an expanded agreement for the construction of VVER-1200 reactors and modular nuclear power plants, while accelerating work at the strategic Kudankulam site.
Fusion Fuel Cycles has begun work on its UNITY-2 facility, a unique test bench designed to validate the full tritium fuel cycle under fusion conditions, marking a key step toward fusion energy.
Framatome will produce TRISO fuel at Romans-sur-Isère as part of a pilot project for advanced nuclear reactors, in partnership with actors such as Blue Capsule Technology.
Sweden’s parliament has approved a major reform authorising uranium extraction, opening the door to a reassessment of the economic potential of mining projects containing this strategic mineral.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.