LDES, the future of renewable energy

LDES (long duration energy storage) are developing in parallel with renewable energies because they are necessary for decarbonization.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25£/month*

*billed annually at 99£/year for the first year then 149,00£/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2£/month*
then 14.90£ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

LDES (long duration energy storage) are developing in parallel with renewable energies because they are necessary for decarbonization.

An essential development

The development of LDES is essential to contribute to the fight against climate change. It is the perfect complement to clean but intermittent energy sources. Energy storage is indeed necessary when the intermittency of solar and wind energy prevents the production of energy.

Storage technologies already exist. However, the development of LDES is not enough. These technologies have the potential to ensure system reliability by enabling cost-effective decarbonization of power systems.

In recent years, lithium-ion batteries have received increasing interest. However, these batteries lack economic competitiveness for long-term energy storage. In addition, they have safety and sustainability issues, including thermal runaway and significant recycling costs.

Long-term storage technologies already exist and are promising. Their use seems more appropriate than lithium-ion batteries for many purposes. However, the cost of these technologies is expensive and efforts are needed to reduce it.

Various LDES technologies

Various LDES technologies already exist, each at different levels of maturity and market readiness. Among these, the RFB (Redox flow battery) technology is characterized by its ease of adaptation. It has a long service life and high operational safety. These characteristics make these batteries suitable for stationary storage.

However, this technology suffers from its low energy density compared to lithium-ion batteries. Within the RFB technology, VRFB (Vanadium RFB) batteries have been more widely deployed to date. High initial investment costs hindered their adoption.

The fluctuating cost of vanadium presents an additional challenge. Rapid scaling is needed to reduce costs and realize the potential of this technology. In addition, thermal energy storage and mechanical storage can also be interesting LDES technologies.

Thermal energy storage has the advantage of using cheap and abundant materials. However, converting heat into electricity in an efficient and cost-effective manner is a technological challenge. The mechanical storage is confronted with the need of a suitable topography for its development.

Nuvve Holding Corp. plans three 2MW battery installations in Eastern Zealand to strengthen the Danish grid and optimise revenues through its proprietary software platform.
HS Hyosung partners with Umicore to produce silicon anodes, a key material for next-generation batteries, through a €120 mn investment to strengthen its position in energy storage.
LG Energy Solution partners with South 8 Technologies to develop lithium-ion batteries capable of operating at -60 °C, strengthening its position in the space sector alongside KULR Technology Group and NASA.
Masdar commits to developing a 300MW/600MWh battery storage system in Uzbekistan, marking a major step in modernising the national grid and securing investments in renewable energy.
Jabil and Inno will co-develop a 15,000 sqm plant in Rayong, Thailand, to manufacture metal enclosures for battery energy storage systems, aiming to enhance vertical integration and secure supply chains.
Adani Group launches a 1126 MW project in Khavda, marking its first entry into energy storage, with one of the largest BESS systems ever built at a single site.
Kuwait is preparing a battery storage project with a capacity of up to 6 GWh to stabilise its power grid and address rising electricity demand.
Quino Energy secures $16mn in funding to scale global production of its organic electrolytes, with strategic support from investor Atri Energy Transition.
China's Envision Energy will supply a 680MW battery storage system to UK-based Statera Energy as part of the Carrington project, one of the largest in the country to reach financial close.
Girasol Energy begins grid-scale battery aggregation with two facilities totalling 4MW in Japan, marking a strategic expansion into balancing markets.
Driven by the recovery in the raw materials market, CBAK Energy posted a sharp rise in revenue in the third quarter, while its battery business enters a complex industrial transition.
Daiwa Energy & Infrastructure, Fuyo General Lease and Astmax have commissioned a 50MW/100MWh battery storage station in Sapporo, marking their entry into Japan’s large-scale energy storage market.
Sonnedix has started construction on a 125MWh battery storage system at its 30MWAC Oita solar site, with commercial operation planned for November 2026 and a JPY21.4bn ($142mn) financing secured.
Tamagawa Energy has completed the acquisition of a 2MW/8MWh battery site in Kagoshima for JPY690mn ($4.57mn), marking its entry into grid-scale storage.
Tokyo Asset Solution invests in two storage projects, including a standalone site in the Japanese capital, marking its entry into the large-scale sector with national and international partners.
LEAG Clean Power and Fluence Energy will build a 4 GWh battery energy storage system in Germany, marking a major step in the industrialisation of storage capacity at a European scale.
Plus Power secured $160mn in tax equity investments from Morgan Stanley to fund two battery storage facilities in Massachusetts and Maine, the largest ever developed in New England.
Chinese manufacturer Pylontech strengthens its international investment strategy by launching a local entity in Australia to accelerate the deployment of its energy storage solutions.
Chinese supplier HiTHIUM enters the Israeli market with a strategic agreement to deploy 1.5GWh of long-duration energy storage alongside El-Mor Renewable Energy.
GridStor has inaugurated its first energy storage facility in Texas, a 220 MW battery, designed to support the ERCOT grid and respond to the rapid increase in industrial demand in the state.

All the latest energy news, all the time

Annual subscription

8.25£/month*

*billed annually at 99£/year for the first year then 149,00£/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2£/month*
then 14.90£ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.