United States: hydrogen faces competition from renewable energies

Green hydrogen producers in the USA are facing increasing competition for access to renewable energies, while new federal tax rules are making their development even more complex.

Share:

Green hydrogen production infrastructure in the USA

Gain full professional access to energynews.pro from 4.90€/month.
Designed for decision-makers, with no long-term commitment.

Over 30,000 articles published since 2021.
150 new market analyses every week to decode global energy trends.

Monthly Digital PRO PASS

Immediate Access
4.90€/month*

No commitment – cancel anytime, activation in 2 minutes.

*Special launch offer: 1st month at the indicated price, then 14.90 €/month, no long-term commitment.

Annual Digital PRO Pass

Full Annual Access
99€/year*

To access all of energynews.pro without any limits

*Introductory annual price for year one, automatically renewed at 149.00 €/year from the second year.

In the United States, the production of green hydrogen, based on the electrolysis of water fuelled by renewable energies, is developing within an increasingly demanding framework.
Under the Inflation Reduction Act, the federal government provides tax credits (45V) to encourage the production of low-carbon hydrogen.
However, the conditions imposed to obtain these credits represent a major obstacle for players in the sector.
These include the obligation to combine hydrogen production with renewable energy consumption on an hourly basis, a local sourcing requirement, and the use of new energy installations.
These constraints are designed to ensure that the hydrogen produced is truly green, but they introduce additional complexity into project implementation. Hydrogen producers, especially those connected to power grids, now have to compete with energy-consuming businesses such as data centers, which do not have to comply with these same rules.
This puts them at a competitive disadvantage when it comes to accessing renewable energies.

Competition for access to renewable energies

Competition for access to renewable energies is intensifying in several states, including California, Oregon and Washington.
These regions, which actively encourage the production of low-carbon hydrogen, evaluate the carbon footprint of each project.
To obtain tax incentives, producers must prove that their electricity comes from renewable sources.
This requirement creates a real battle for access to these resources, particularly in the face of energy-intensive sectors such as technology giants and data centers, which absorb massive amounts of electricity.
Data centers in particular, whose numbers continue to grow with the expansion of artificial intelligence and cloud computing technologies, require huge amounts of energy.
This competition for available electricity weighs heavily on green hydrogen projects, especially those dependent on electricity grids.
The development of hydrogen projects has to contend with rising costs and increasingly long interconnection times.
This situation makes so-called “off-grid” hydrogen projects even more attractive, where producers develop their own energy facilities, thus avoiding direct competition with other users of renewable electricity.
Another major obstacle for green hydrogen projects is the traceability of the electricity used.
The new rules imposed by the Inflation Reduction Act require renewable electricity consumption to be tracked in real time, on an hourly basis.
This means that producers have to prove that the energy they use is green at the very moment they produce hydrogen.
This hourly traceability represents a technological challenge, as few systems are currently able to certify the origin of energy with such precision.
Only the PJM-GATS platform in the USA offers hourly tracking of renewable energy certificates, making access to tax credits even more complex for producers.
For grid-connected projects, this requirement adds a further level of difficulty.
Indeed, it is often impossible to guarantee that electricity drawn from the grid comes exclusively from renewable sources, especially in regions where the supply of green energy is already saturated by demand.

Challenges and prospects

Faced with these challenges, some market players are adopting alternative solutions.
Matt McMonagle, CEO of NovoHydrogen, explains that his company favors a model where it develops its own renewable energy sources, connected directly to its electrolyzers.
This approach guarantees the traceability of the electricity used, and frees the company from the constraints of competing for renewable energies via public grids.
However, for other NovoHydrogen projects, a connection to the grid remains necessary, not least because of the large quantities of energy required for hydrogen production.
In other cases, companies such as H2B2 Electrolysis Technologies are developing strategies aimed at vertically integrating their activities.
This gives them greater control over their renewable energy supplies, while optimizing production costs.
However, the hourly tracking of renewable electricity remains a major challenge, especially for projects located in regions where tracking infrastructures are not yet in place.
The pressure on US energy grids is only increasing.
According to projections, business needs for renewable energy are expected to require up to 19 GW of additional capacity by 2035.
This massive demand, fuelled by the electrification of transport and the rise of new technologies, further complicates access to energy for hydrogen projects.
For hydrogen producers, the rise of these competitors represents a considerable challenge.
The capacity of grids to supply clean energy in sufficient quantities is becoming increasingly limited, requiring innovative supply strategies to secure long-term energy resources.

Electric Hydrogen announces the acquisition of Ambient Fuels and an alliance with Generate Capital to offer up to $400 mn in hydrogen project financing worldwide starting in 2026.
Hynfra PSA strengthens its presence in West Africa with a $1.5bn green ammonia project, backed by the Mauritanian government, with commercial operations expected to start by 2030.
Over 500 hydrogen projects are now under construction or operational worldwide, with total committed investments reaching USD110 billion, representing an increase of USD35 billion in one year.
From 2029, Verso Energy will supply hydrogen produced in Moselle to steel group SHS, supported by a cross-border pipeline and an industrial investment exceeding €100mn.
The success of SGN’s test on a gas pipeline converted to hydrogen confirms Terra Firma Energy’s technological choices, with sites already equipped to accommodate this type of energy investment.
Lhyfe has started supplying Essent with renewable green hydrogen under a multi-year contract, marking a major commercial debut in the Netherlands for the French producer.
The Dutch government grants major funding to RWE to develop an offshore wind-powered electrolysis facility, marking a key step in the OranjeWind project.
ScottishPower pauses its renewable hydrogen projects in the United Kingdom, despite receiving public subsidies, citing a lack of commercial viability under the HAR1 programme.
thyssenkrupp nucera has completed the purchase of key assets from Green Hydrogen Systems, strengthening its position in pressurised alkaline electrolysis for industrial hydrogen production.
GH2 Solar Ltd partners with AHES Ltd to build an electrolyzer plant in Gwalior, targeting 500 MW capacity by 2030 with $19mn government support.
A cooperation agreement, a bilateral carbon-credit mechanism and converging standards lay the ground for India→Japan hydrogen and ammonia flows, with volume targets, price-support schemes and first export projects scaling up.
Hydrogen offtake agreements are multiplying, with Germany and Japan leading, mobilizing producers and industrial buyers in a still nascent but already highly competitive market.
Vema Hydrogen mobilise des experts internationaux pour accélérer la mise sur le marché de son hydrogène minéral, alors que l’entreprise prévoit de forer ses premiers puits pilotes en Amérique du Nord d’ici la fin de l’année.
First Public Hydrogen Authority opens a request for proposals to transport gaseous and liquid hydrogen across California, with a deadline set for September 12.
US-based manufacturer Ohmium unveils a new generation of modular electrolysers integrating all production systems within a reduced footprint, aiming to lower installation and operating costs for green hydrogen.
ABO Energy and Hydropulse join forces to develop decentralised green hydrogen production units in Europe, with Spain and Finland as priority markets.
Next Hydrogen secures two separate loans, including one from its executives, to consolidate liquidity and continue operations while evaluating long-term financial solutions.
Metacon receives EUR 14.9 million from Motor Oil Hellas for the approved delivery of ten electrolysis units, marking the first stage of a strategic industrial project in Greece.
The European Union’s regulatory framework mandates green hydrogen integration in refineries, generating projected demand of 0.5 million tonnes by 2030.
Air Products transported over 50 tanker trucks to the Kennedy Space Center to fill the world’s largest liquid hydrogen tank, supporting NASA’s Artemis missions.

Log in to read this article

You'll also have access to a selection of our best content.