The Evolution of Nuclear Propulsion in Space Exploration

A Silent Revolution: Nuclear Propulsion in the Era of Space Exploration.

Share:

Propulsion fusée

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

The Evolution of Nuclear Propulsion has radically transformed the way we think about space exploration. Spectacular advances have been made over the decades, but one of the most striking and discreet developments has been the integration of nuclear propulsion into our quest to understand the universe around us.

The Challenge of Interstellar Exploration

The race to conquer space has always been driven by a desire to push back the limits of science and technology. However, there are fundamental challenges to overcome in order to reach the farthest reaches of interstellar space.

The development of space nuclear propulsion has been underway for decades, but is now entering a phase where it is moving from theory to reality. NASA recently awarded a $5 million contract to Ultra Safe Nuclear Corporation (USNC) to manufacture and test advanced nuclear fuel. This marks an important transition, as nuclear propulsion moves from the design phase to the concrete development phase.

Public-Private Partnership for Space Exploration

USNC is working with Blue Origin to develop a nuclear thermal propulsion engine optimized for cislunar scientific and civil space missions, i.e. between the Earth and the Moon. This is an example of a public-private partnership designed to push back the frontiers of space exploration.

But why is nuclear propulsion so crucial to the future of space exploration? The answer lies in its ability to propel spacecraft faster and over longer distances.

The Horizons of Space Exploration

Exploring distant planets, collecting samples from asteroids, even visiting other stars are becoming attainable goals. Nuclear propulsion expands our vision of what we can achieve in space, paving the way for new scientific discoveries and a deeper understanding of the universe.

However, the integration of nuclear propulsion into space exploration is not without its challenges. Nuclear safety and waste management issues need to be carefully addressed. It is essential to ensure that these technologies are used responsibly and in line with international standards.

An exciting future

Ultimately, nuclear propulsion is transforming space exploration into an exciting reality. The future looks bright, with interstellar travel and interplanetary missions becoming increasingly accessible. The silent revolution of nuclear propulsion is bringing us a little closer to the stars, while helping us to understand our place in the universe. It’s an exciting era for space exploration, and nuclear power plays a central role in this adventure into the unknown.

Molten salt reactor developer Natura Resources has acquired Shepherd Power and partnered with NOV to scale up modular reactor manufacturing by the next decade.
China National Nuclear Corporation expects commercial operation in 2026 for its ACP100 reactor, following successful cold testing and completion of critical structures in 2025.
Start-up SEATOM has been selected to join NATO's DIANA programme with its micro nuclear reactor designed for extreme environments, reinforcing its position in dual-use marine and military energy technologies.
The Estonian Ministry of Economic Affairs has opened a tender to select a site and conduct initial environmental studies for a 600 MW nuclear power plant, marking a decisive step for the country’s energy future.
The European Commission has approved Poland's financial support plan for its first nuclear power plant, a €42bn project backed by public funding, state guarantees, and a contract for difference mechanism.
Six European nuclear authorities have completed the second phase of a joint review of the Nuward modular reactor, a key step toward aligning regulatory frameworks for small nuclear reactors across Europe.
Driven by off-grid industrial heat demand and decarbonisation mandates, the global small modular reactor market is set to grow 24% annually through 2030, with installed capacity expected to triple within five years.
US fusion energy leaders have called on the federal government to redirect public funding towards their projects, arguing that large-scale investment is needed to stay competitive with China.
Santee Cooper has approved a memorandum of understanding with Brookfield Asset Management to assess the feasibility of restarting two unfinished nuclear reactors, with a potential $2.7 billion payment and 550 MW capacity stake.
Helical Fusion has signed a landmark agreement with Aoki Super to supply electricity from fusion, marking a first in Japan’s energy sector and a commercial step forward for the helical stellarator technology.
India’s nuclear capacity is expected to grow by more than 13,000 MW by 2032, driven by ongoing heavy water reactor construction, new regional projects and small modular reactor development by the Bhabha Atomic Research Centre.
NextEra Energy has lifted its earnings estimates for 2025 and 2026, supported by power demand linked to long‑term contracts previously signed with Google and Meta to supply their artificial intelligence data centres with low‑carbon electricity.
London launches a complete regulatory overhaul of its nuclear industry to shorten authorisation timelines, expand eligible sites, and lower construction and financing costs.
Finland's Ministry of Economic Affairs extends the deadline to June 2026 for the regulator to complete its review of the operating licence for the Olkiluoto spent nuclear fuel repository.
Framatome will replace several digital control systems at the Columbia plant in the United States under a contract awarded by Energy Northwest.
The conditional green light from the nuclear regulator moves Cigéo into its final regulatory stage, while shifting the risks towards financing, territorial negotiations and industrial execution.
The drone strike confirmed by the IAEA on the Chernobyl site vault exposes Ukraine to a nuclear risk under armed conflict, forcing the EBRD to finance partial restoration while industry standards must now account for drone threats.
Deep Fission is installing a 15 MWe pressurised reactor 1.6 km underground at Great Plains Industrial Park, under the Department of Energy’s accelerated pilot programme, targeting criticality by July 4, 2026.
EDF commits to supply 33 MW of nuclear electricity to Verkor over 12 years, enabling the battery manufacturer to stabilise energy costs ahead of launching its first Gigafactory.
The full-scope simulator for the Lianjiang nuclear project has successfully passed factory acceptance testing, paving the way for its installation at the construction site in China's Guangdong province.

All the latest energy news, all the time

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.