Shell abandons blue hydrogen project in Norway for lack of demand

Faced with insufficient demand and high costs, Shell is abandoning its blue hydrogen project in Norway, revealing the industry's difficulties in creating a market for this technology.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

Shell is pulling the plug on its blue hydrogen project in Aukra, on the west coast of Norway.
The project, which aimed to produce 1,200 tonnes of blue hydrogen per day by 2030, was based on a combination of natural gas and carbon capture and storage (CCS).
This process would reduce CO2 emissions while exploiting existing fossil resources.
However, despite its potential, lack of demand and the high costs associated with developing this technology led to the project being abandoned.
The initiative, which was part of Shell’s efforts to support the decarbonization of European industrial sectors, was primarily aimed at supplying hydrogen to heavy industries, notably in Germany and Norway.
The withdrawal of this project comes shortly after a similar decision by Equinor, another major energy player in Norway, which abandoned its own blue hydrogen project for similar reasons.
These successive abandonments raise questions about the market’s ability to support low-carbon energy solutions, despite growing pressure to reduce greenhouse gas emissions.

Blue hydrogen: costs too high for an unestablished market

Blue hydrogen, seen as a transitional alternative towards a low-carbon economy, is based on the use of natural gas with CCS technology to limit CO2 emissions.
However, this technology remains costly, both in terms of infrastructure and operation.
The investments required to make blue hydrogen competitive with traditional or even green hydrogen (produced from renewable sources) are considerable.
For Shell, the profitability of its project depended on the growing demand for hydrogen, particularly in heavy industrial sectors, which are often difficult to decarbonize by other means.
However, despite talk of hydrogen adoption in several European countries, demand for blue hydrogen has not reached a sufficient level to justify such investments.
As a result, Shell has decided not to renew its partnership with Aker Horizons and CapeOmega, initially set up to develop the Aukra project.

Europe’s hydrogen strategy remains uncertain

The development of hydrogen in Europe, whether blue or green, is at the heart of the European Union’s decarbonization policies.
In particular, the EU has set ambitious targets for reducing greenhouse gas emissions by 2050, which implies a profound transformation of energy, industrial and transport systems.
Nevertheless, the costs associated with producing clean hydrogen, whether from renewable sources or from CCS technologies, are holding back mass deployment of this technology.
Blue hydrogen projects, such as those envisaged by Shell and Equinor, require heavy and costly infrastructures.
Carbon capture and storage, while technically feasible, adds considerably to the cost of hydrogen production.
This makes it difficult for this technology to compete with traditional solutions.
In addition, the uncertainties associated with the creation of a European hydrogen market, particularly for cross-border projects, further complicate the economic viability of such projects.

Hydrogen’s uncertain role in decarbonization

Shell and Equinor’s decision to withdraw from these projects illustrates the major challenges facing the hydrogen industry.
Although hydrogen has been touted as a key solution for decarbonizing sectors such as steel production, chemicals and transportation, the infrastructure required for its development is not yet in place, and costs remain a major brake.
In Norway, where the government has supported several hydrogen initiatives, Shell and Equinor’s decision is a major setback for the country’s ambitions to become a leader in this technology.
The future of hydrogen in Europe will largely depend on the ability of governments and industries to create a favorable regulatory and economic framework for its development.
Public incentives, in the form of subsidies or carbon credits, could help overcome financial obstacles.
However, the question of demand remains central: without a stable and sufficiently large market for hydrogen, companies will be reluctant to invest in costly and uncertain technologies.

Peregrine Hydrogen and Tasmania Energy Metals have signed a letter of intent to install an innovative electrolysis technology at the future nickel processing site in Bell Bay, Tasmania.
Elemental Clean Fuels will develop a 10-megawatt green hydrogen production facility in Kamloops, in partnership with Sc.wén̓wen Economic Development and Kruger Kamloops Pulp L.P., to replace part of the natural gas used at the industrial site.
Driven by green hydrogen demand and state-backed industrial plans, the global electrolyser market could reach $42.4bn by 2034, according to the latest forecast by Future Market Insights.
Driven by mobility and alkaline electrolysis, the global green hydrogen market is projected to grow at a rate of 60 % annually, reaching $74.81bn in 2032 from $2.79bn in 2025.
Plug Power will supply a 5MW PEM electrolyser to Hy2gen’s Sunrhyse project in Signes, marking a key step in expanding RFNBO-certified hydrogen in southern France.
The cross-border hydrogen transport network HY4Link receives recognition from the European Commission as a project of common interest, unlocking access to funding and integration into Europe’s energy infrastructure.
The withdrawal of Stellantis weakens Symbio, which is forced to drastically reduce its workforce at the Saint-Fons plant, despite significant industrial investment backed by both public and private stakeholders.
German steelmaker Thyssenkrupp plans to cut 11,000 jobs and reduce capacity by 25% as a condition to enable the sale of its steel division to India’s Jindal Steel.
Snam strengthens its position in hydrogen and CO₂ infrastructure with EU-backed SoutH2 corridor and Ravenna hub, both included in the 2025 list of strategic priorities for the European Union.
Driven by industrial demand and integration with renewable energy, the electrolyzer market is projected to grow 38.2% annually, rising from $2.08bn in 2025 to $14.48bn by 2031.
BrightHy Solutions, a subsidiary of Fusion Fuel, has signed a €1.7mn contract to supply a hydrogen refuelling station and electrolyser to a construction company operating in Southern Europe.
In Inner Mongolia, Xing’an League is deploying CNY6bn in public funds to build an integrated industrial ecosystem for hydrogen, ammonia and methanol production using local renewable resources.
Despite a drop in sales, thyssenkrupp nucera ends fiscal year 2024/2025 with operating profit, supported by stable electrolysis performance and positive cash flow.
ExxonMobil’s pause of the Baytown project highlights critical commercial gaps and reflects the impact of US federal cuts to low-carbon technologies.
State-owned Chinese group Datang commissions a project combining renewable energy and green hydrogen within a coal-to-chemicals complex in Inner Mongolia, aiming to reduce stranded asset risks while securing future industrial investments.
Möhring Energie Group commits to a green hydrogen and ammonia production project in Mauritania, targeting European markets from 2029, with an initial capacity of 1 GW.
Air Liquide deploys two hydrogen-powered heavy-duty trucks for its logistics operations in the Rotterdam area, marking a step in the integration of low-emission solutions in freight transport.
French hydrogen producer Lhyfe will deliver over 200 tonnes of RFNBO-certified hydrogen to a heavy mobility operator under a multi-year contract effective since 1 November 2025.
Plug Power was selected by Carlton Power to equip three UK-based projects totalling 55 MW, under an agreement subject to a final investment decision expected by early 2026.
Hyroad Energy expands its services to include maintenance, software, and spare parts, offering a comprehensive solution for hydrogen freight operators in the United States.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.