Recycling: A boom in end-of-life electric car batteries?

Anna Vanderbruggen, a French researcher at the German research institute Helmholt, has developed a cost-effective method to recover graphite from end-of-life electric car batteries.

Share:

The recovery of graphite from electric car batteries is a major challenge for the industry. Anna Vanderbruggen, a French researcher, has developed a method to recover this component in a cost-effective way. The growing demand for electric car batteries, which contain rare and expensive materials, makes recycling a must in the coming years. However, efforts to recycle these end-of-life batteries are still in the pilot phase, although there is increasing pressure from theEuropean Union to do so.

Vanderbruggen’s method for recovering graphite

Anna Vanderbruggen works at the prestigious German research institute Helmholt in Freiberg. The researcher has developed a method to separate graphite from the metals contained in the “black mass”. This black powder, composed of cobalt, nickel, lithium and manganese, comes from the recycling of batteries. The researcher explains that the method involves placing the “black mass” in water and injecting reagents and air bubbles into it. The graphite then attaches to the bubbles, while the metals remain in the water. This method is a significant advance in battery recycling, as graphite is a material that has been difficult to recover until now.

The market in construction for the recycling of electric car batteries

With the growing demand for electric cars, the recycling of end-of-life batteries is becoming an increasingly important issue. Batteries contain rare and expensive materials, which could be recovered and reused for new batteries. Graphite is one of these key components, accounting for up to a quarter of the weight of batteries. Despite this, little attention had been paid to the recovery of graphite until Anna Vanderbruggen developed a method to recover this material in a cost-effective manner.

Tensions over the supply and cost of raw materials have sharpened the interest of manufacturers in battery recycling. The price of lithium, for example, has increased 13-fold over the past five years. Experts believe that manufacturers are now able to recycle almost all the materials that make up batteries. Aurubis, Eramet, Umicore and Mercedes are all working on recycling projects in the pilot phase. However, most of the current projects are still in the testing phase.

European pressure for the recycling of electric car batteries

The European Union has taken steps to encourage manufacturers to recycle batteries. An agreement reached in December 2022 stipulates that electric vehicle batteries must incorporate 16% recycled cobalt and 6% recycled lithium and nickel from 2031. In addition, manufacturers will have to recycle at least 70% of the weight of the batteries before this date. Anna Vanderbruggen points out that if manufacturers recover new components such as graphite, they will be able to meet these requirements.

Challenges to battery recycling

The market for electric car batteries is growing, but there are not enough volumes of end-of-life batteries at the moment. According to Serge Pelissier, director of research at the Gustave Eiffel University in Lyon, the batteries can last at least 7 to 8 years. In addition, the different models of automotive batteries make it difficult to set up a standardized recycling system. According to Alex Keynes of the NGO Transport & Environment, it will be the early 2030s before the market is mature enough to allow for effective battery recycling in Europe.

Northvolt-Hydro, a Swedish and Norwegian joint venture, is positioning itself as a pioneer in this niche, aiming to recover the equivalent of 500,000 batteries by 2030. The European Union supports this endeavor by putting pressure on the market players. In fact, it reached an agreement in December 2022 according to which electric vehicle batteries will have to incorporate 16% recycled cobalt and 6% recycled lithium and nickel from 2031. Manufacturers will also have to recycle at least 70% of the weight of batteries before 2031.

Important environmental and economic issues

Recycling batteries is a major environmental issue, as it avoids the pollution caused by landfilling or incinerating used batteries. It is also an economic issue, as the market for used batteries is growing rapidly and represents an opportunity for companies to recover valuable materials such as cobalt, lithium, nickel and graphite. The stakes are therefore twofold: it is a question of both preserving the environment and developing a circular economy around electric batteries.

Canadian Solar's subsidiary commissions the Papago Storage facility, supplying electricity to Arizona Public Service to meet high summer demand, thus strengthening local energy capacity with a total potential of 1,800 MWh.
EDF Power Solutions has been selected by the Japanese government to build a 110 MW lithium-ion battery after winning a public tender aimed at enhancing the flexibility of the country's electricity grid.
Atmos Renewables has completed financing for a 100 MW battery energy storage system in Western Australia, marking the company's first asset of this type in the region and strengthening its presence in the Australian energy market.
Eos Energy Enterprises has received an additional $22.7mn from the US Department of Energy to complete the first phase of its battery manufacturing project in the United States, bringing total funding to $90.9mn.
A Wood Mackenzie report estimates required battery investments at $1.2 trillion to integrate an additional 5,900 GW of renewable energy, highlighting battery storage systems' key role in stabilising electrical grids.
Chinese company HyperStrong and Swedish firm Repono AB announce a strategic agreement to jointly implement large-scale energy storage projects totalling 1.4 GWh in Europe by the end of 2027.
Globeleq and African Rainbow Energy finalise financing for Africa's largest standalone battery energy storage project, raising ZAR 5.4 billion ($300 million) from Absa and Standard Bank in South Africa.
Matrix Renewables and Pioneer Community Energy have signed an energy capacity contract for a 22 MW battery storage project in Kern County, operational from early 2026.
The Ignitis Group is starting the construction of three battery energy storage systems in Lithuania, with a combined capacity of 291 MW and a total investment of €130mn.
Alinta Energy has appointed GenusPlus Group to build the first phase of the Reeves Plains Energy Hub Battery, a high-capacity storage facility designed to support grid stability in South Australia.
A partnership between Indonesia Battery and Contemporary Amperex Technology aims to launch a lithium-ion battery plant in Indonesia by the end of 2026, with a 6.9 gigawatt-hour capacity and planned expansion.
State Grid Wuzhong Power Supply Company announces the completion of the energy storage compartment at Tongli substation, a key step for the upcoming integration of a 300 MW shared storage power plant in Ningxia.
Globeleq and African Rainbow Energy finalise commercial agreements for a 153 MW energy storage project in South Africa, aimed at enhancing national grid stability and optimising peak energy management.
Estimated at 40.9 billion dollars in 2024, the global microgrid market is expected to grow at an average annual rate of 19.28% to reach 191.01 billion dollars by 2033, driven notably by innovative energy contracts.
The U.S. energy storage market set a historic record in early 2025, surpassing 2 GW installed in the first quarter despite increasing uncertainty regarding federal fiscal policies and tax credits.
The Sino-Moroccan joint venture COBCO has begun manufacturing essential lithium-ion battery components at its Jorf Lasfar plant, targeting a final annual capacity of 70 GWh, enough to equip one million electric vehicles.
Trianel teams with BKW and Luxcara to build a 900 MW lithium-iron-phosphate storage park in Waltrop, the first phase of a complex that could reach 1.5 GW and stabilise the German grid.
Blue Whale Energy partners with UNIGRID to deploy behind-the-meter storage systems adapted to constrained commercial and industrial urban areas in Southeast Asia.
Northvolt, recently placed under judicial administration, has received an indicative offer from a foreign investor to acquire its Swedish assets, signaling a potential imminent restart of its battery production units.
The frame agreement aligns Jinko ESS’s utility-scale storage technology with Metlen’s development pipeline, unlocking more than 3GWh across Chile and Europe while reducing delivery risk for grid operators.