Recycling: A boom in end-of-life electric car batteries?

Anna Vanderbruggen, a French researcher at the German research institute Helmholt, has developed a cost-effective method to recover graphite from end-of-life electric car batteries.

Share:

Gain full professional access to energynews.pro from 4.90$/month.
Designed for decision-makers, with no long-term commitment.

Over 30,000 articles published since 2021.
150 new market analyses every week to decode global energy trends.

Monthly Digital PRO PASS

Immediate Access
4.90$/month*

No commitment – cancel anytime, activation in 2 minutes.

*Special launch offer: 1st month at the indicated price, then 14.90 $/month, no long-term commitment.

Annual Digital PRO Pass

Full Annual Access
99$/year*

To access all of energynews.pro without any limits

*Introductory annual price for year one, automatically renewed at 149.00 $/year from the second year.

The recovery of graphite from electric car batteries is a major challenge for the industry. Anna Vanderbruggen, a French researcher, has developed a method to recover this component in a cost-effective way. The growing demand for electric car batteries, which contain rare and expensive materials, makes recycling a must in the coming years. However, efforts to recycle these end-of-life batteries are still in the pilot phase, although there is increasing pressure from theEuropean Union to do so.

Vanderbruggen’s method for recovering graphite

Anna Vanderbruggen works at the prestigious German research institute Helmholt in Freiberg. The researcher has developed a method to separate graphite from the metals contained in the “black mass”. This black powder, composed of cobalt, nickel, lithium and manganese, comes from the recycling of batteries. The researcher explains that the method involves placing the “black mass” in water and injecting reagents and air bubbles into it. The graphite then attaches to the bubbles, while the metals remain in the water. This method is a significant advance in battery recycling, as graphite is a material that has been difficult to recover until now.

The market in construction for the recycling of electric car batteries

With the growing demand for electric cars, the recycling of end-of-life batteries is becoming an increasingly important issue. Batteries contain rare and expensive materials, which could be recovered and reused for new batteries. Graphite is one of these key components, accounting for up to a quarter of the weight of batteries. Despite this, little attention had been paid to the recovery of graphite until Anna Vanderbruggen developed a method to recover this material in a cost-effective manner.

Tensions over the supply and cost of raw materials have sharpened the interest of manufacturers in battery recycling. The price of lithium, for example, has increased 13-fold over the past five years. Experts believe that manufacturers are now able to recycle almost all the materials that make up batteries. Aurubis, Eramet, Umicore and Mercedes are all working on recycling projects in the pilot phase. However, most of the current projects are still in the testing phase.

European pressure for the recycling of electric car batteries

The European Union has taken steps to encourage manufacturers to recycle batteries. An agreement reached in December 2022 stipulates that electric vehicle batteries must incorporate 16% recycled cobalt and 6% recycled lithium and nickel from 2031. In addition, manufacturers will have to recycle at least 70% of the weight of the batteries before this date. Anna Vanderbruggen points out that if manufacturers recover new components such as graphite, they will be able to meet these requirements.

Challenges to battery recycling

The market for electric car batteries is growing, but there are not enough volumes of end-of-life batteries at the moment. According to Serge Pelissier, director of research at the Gustave Eiffel University in Lyon, the batteries can last at least 7 to 8 years. In addition, the different models of automotive batteries make it difficult to set up a standardized recycling system. According to Alex Keynes of the NGO Transport & Environment, it will be the early 2030s before the market is mature enough to allow for effective battery recycling in Europe.

Northvolt-Hydro, a Swedish and Norwegian joint venture, is positioning itself as a pioneer in this niche, aiming to recover the equivalent of 500,000 batteries by 2030. The European Union supports this endeavor by putting pressure on the market players. In fact, it reached an agreement in December 2022 according to which electric vehicle batteries will have to incorporate 16% recycled cobalt and 6% recycled lithium and nickel from 2031. Manufacturers will also have to recycle at least 70% of the weight of batteries before 2031.

Important environmental and economic issues

Recycling batteries is a major environmental issue, as it avoids the pollution caused by landfilling or incinerating used batteries. It is also an economic issue, as the market for used batteries is growing rapidly and represents an opportunity for companies to recover valuable materials such as cobalt, lithium, nickel and graphite. The stakes are therefore twofold: it is a question of both preserving the environment and developing a circular economy around electric batteries.

Following its acquisition of Northvolt’s assets, US-based Lyten has appointed several former executives of the Swedish battery maker to key roles to restart production in Europe.
US-based contractor TruGrid has completed three battery installations in Texas ahead of schedule and within budget, despite weather disruptions and logistical challenges that typically impact such projects.
GazelEnergie plans to build a data center at its coal-fired plant in Saint-Avold, with commissioning expected in 2028 and a capacity of 300 MW.
Ormat Technologies has begun commercial operation of its new energy storage facility in Texas, alongside a seven-year tolling agreement and a hybrid tax equity deal with Morgan Stanley Renewables.
German grid operators face a surge in battery storage connection requests, driven by a flawed approval process.
TWAICE will equip four energy storage sites in Southern California with its analytics platform, supporting operator Fullmark Energy in CAISO market compliance and performance optimisation.
CATL unveiled in São Paulo its new 9MWh TENER Stack system, designed for the South American market, responding to rising demand for energy storage driven by the growth of renewable energy.
EdgeConneX has acquired a second site in the Osaka region, bringing its total capacity to 350MW to support the growth of the Cloud and AI market in Japan.
Driven by grid flexibility demand and utility investments, the global containerized BESS market will grow at an annual rate of 20.9% through 2030.
The American battery materials manufacturer, Group14, finalizes a $463 million fundraising round and acquires full ownership of its South Korean joint venture from conglomerate SK Inc.
Energy Plug Technologies partnered with GGVentures to deliver three energy storage systems to the U.S. construction sector, marking its first commercial breakthrough in this strategic market.
HD Renewable Energy has completed the connection of its Helios storage system to the Hokkaido grid. The 50 MW project is expected to enter commercial operation by the end of 2025, targeting multiple segments of the Japanese electricity market.
Ingeteam partners with JinkoSolar and ACLE Services to equip seven sites in Australia, representing a total capacity of 35 MW and 70 MWh of energy storage.
Copenhagen Infrastructure Partners has acquired from EDF power solutions North America the Beehive project, a 1 gigawatt-hour battery storage facility located in Arizona.
Developer Acen Australia has submitted a battery storage project to the federal government, targeting 440MW/1,760MWh in a region near solar and mining infrastructure in Queensland.
Google invests in Italy’s Energy Dome to deploy in Oman a long-duration CO₂-based storage solution, in partnership with Takhzeen Oman and the sovereign wealth fund Oman Investment Authority.
Zeo Energy has completed the acquisition of Heliogen, creating a new division dedicated to long-duration energy generation and storage for commercial and industrial markets.
Entech will deliver a 20 MWh battery storage system in Loire-Atlantique under an agreement that includes a twenty-year maintenance contract.
Portland General Electric inaugurates three new battery energy storage sites, strengthening available capacity in the Portland metropolitan area by 475 MW and supporting growing demand while stabilising costs.
Tesla retains the top position in the global battery storage market, but Sungrow moves within one point, revealing intensifying rivalries and a rapid reshaping of regional dynamics in 2024.

Log in to read this article

You'll also have access to a selection of our best content.