Recycling: A boom in end-of-life electric car batteries?

Anna Vanderbruggen, a French researcher at the German research institute Helmholt, has developed a cost-effective method to recover graphite from end-of-life electric car batteries.

Share:

Comprehensive energy news coverage, updated nonstop

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

7-Day Pass

Up to 50 articles accessible for 7 days, with no automatic renewal

3 $/week*

FREE ACCOUNT

3 articles/month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 30,000 articles • 150+ analyses per week

The recovery of graphite from electric car batteries is a major challenge for the industry. Anna Vanderbruggen, a French researcher, has developed a method to recover this component in a cost-effective way. The growing demand for electric car batteries, which contain rare and expensive materials, makes recycling a must in the coming years. However, efforts to recycle these end-of-life batteries are still in the pilot phase, although there is increasing pressure from theEuropean Union to do so.

Vanderbruggen’s method for recovering graphite

Anna Vanderbruggen works at the prestigious German research institute Helmholt in Freiberg. The researcher has developed a method to separate graphite from the metals contained in the “black mass”. This black powder, composed of cobalt, nickel, lithium and manganese, comes from the recycling of batteries. The researcher explains that the method involves placing the “black mass” in water and injecting reagents and air bubbles into it. The graphite then attaches to the bubbles, while the metals remain in the water. This method is a significant advance in battery recycling, as graphite is a material that has been difficult to recover until now.

The market in construction for the recycling of electric car batteries

With the growing demand for electric cars, the recycling of end-of-life batteries is becoming an increasingly important issue. Batteries contain rare and expensive materials, which could be recovered and reused for new batteries. Graphite is one of these key components, accounting for up to a quarter of the weight of batteries. Despite this, little attention had been paid to the recovery of graphite until Anna Vanderbruggen developed a method to recover this material in a cost-effective manner.

Tensions over the supply and cost of raw materials have sharpened the interest of manufacturers in battery recycling. The price of lithium, for example, has increased 13-fold over the past five years. Experts believe that manufacturers are now able to recycle almost all the materials that make up batteries. Aurubis, Eramet, Umicore and Mercedes are all working on recycling projects in the pilot phase. However, most of the current projects are still in the testing phase.

European pressure for the recycling of electric car batteries

The European Union has taken steps to encourage manufacturers to recycle batteries. An agreement reached in December 2022 stipulates that electric vehicle batteries must incorporate 16% recycled cobalt and 6% recycled lithium and nickel from 2031. In addition, manufacturers will have to recycle at least 70% of the weight of the batteries before this date. Anna Vanderbruggen points out that if manufacturers recover new components such as graphite, they will be able to meet these requirements.

Challenges to battery recycling

The market for electric car batteries is growing, but there are not enough volumes of end-of-life batteries at the moment. According to Serge Pelissier, director of research at the Gustave Eiffel University in Lyon, the batteries can last at least 7 to 8 years. In addition, the different models of automotive batteries make it difficult to set up a standardized recycling system. According to Alex Keynes of the NGO Transport & Environment, it will be the early 2030s before the market is mature enough to allow for effective battery recycling in Europe.

Northvolt-Hydro, a Swedish and Norwegian joint venture, is positioning itself as a pioneer in this niche, aiming to recover the equivalent of 500,000 batteries by 2030. The European Union supports this endeavor by putting pressure on the market players. In fact, it reached an agreement in December 2022 according to which electric vehicle batteries will have to incorporate 16% recycled cobalt and 6% recycled lithium and nickel from 2031. Manufacturers will also have to recycle at least 70% of the weight of batteries before 2031.

Important environmental and economic issues

Recycling batteries is a major environmental issue, as it avoids the pollution caused by landfilling or incinerating used batteries. It is also an economic issue, as the market for used batteries is growing rapidly and represents an opportunity for companies to recover valuable materials such as cobalt, lithium, nickel and graphite. The stakes are therefore twofold: it is a question of both preserving the environment and developing a circular economy around electric batteries.

Clean Energy Technologies has signed a letter of intent to lead multiple battery energy storage system projects across New York State, with each site planned for 5 MW of capacity.
The Hagersville Energy Storage Park, led by Boralex and SNGRDC, was awarded for its planned 300 MW capacity, making it Canada’s largest battery storage site.
Nala Renewables strengthens its position in Finland with the acquisition of a battery energy storage portfolio exceeding 250 MW from Swiss developer Fu-Gen AG.
The Japanese group has started construction of a 20MW battery energy storage system in Hokkaido, aiming for commissioning in 2027 with support from PowerX and Kyocera Communication Systems.
Nightpeak Energy has launched commercial operations of Bocanova Power, a 150 MW battery storage facility near Houston, to meet rapidly growing energy demand in Texas.
Neoen has launched construction of its first long-duration battery in Muchea and commissioned the second stage of Collie Battery, bringing its storage capacity in Western Australia to 3,145 MWh.
Ottawa invests CAD22mn ($16.1mn) to support eight technology initiatives aimed at strengthening innovation, local production, and competitiveness in the country's battery supply chain.
Neoen begins construction of its first six-hour discharge battery in Western Australia and commissions the second phase of Collie, surpassing 3 GWh of storage capacity in the State.
Transgrid plans to contract up to 5 GW of grid-forming batteries to strengthen the stability of New South Wales’ electricity network during the energy transition.
The US energy storage market set a quarterly record with 5.6 GW installed, driven by utility-scale projects despite ongoing regulatory uncertainty.
Storage provider HiTHIUM will supply 2GWh of batteries to Solarpro for multiple large-scale projects across the Balkans and Central Europe.
The three Japanese groups announced two new high-voltage battery projects in Shizuoka and Ibaraki prefectures, bringing their joint portfolio to four facilities with a combined capacity of 180MW.
EVE Energy seals a 500MWh strategic agreement with CommVOLT in Europe for commercial and industrial storage at Solar & Storage Live UK 2025, as its five MWh direct current system enters deployment.
Energy Vault Holdings has secured $50mn in debenture financing, complementing a $300mn preferred equity investment, to support the development of its large-scale energy storage projects.
Grenergy reported €86mn in EBITDA in the first half of 2025 and raised its investments to €421mn, supported by increased energy sales and major storage operations.
The 400 MWh energy storage system installed by RWE in Limondale becomes the longest-duration grid-connected battery in Australia, with full commissioning expected by the end of the year.
A steel site in Taizhou now hosts Jiangsu’s largest behind-the-meter energy storage system, with 120 MW of output and 240 MWh of capacity, developed by Jingjiang Taifu New Energy.
Braille Energy Systems will directly integrate the distribution of its lithium battery line for drag racing, previously managed by Tony Christian Racing, consolidating its motorsport operations starting October 1.
NorthX Climate Tech commits $1.6mn to three Canadian energy storage firms, supporting the development of localised grid solutions in British Columbia and Alberta.
Eni has launched an industrial project with Seri Industrial to produce lithium iron phosphate batteries in Brindisi, targeting a capacity of more than 8 GWh per year.

All the latest energy news, all the time

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

7 DAY PASS

Up to 50 items can be consulted for 7 days,
without automatic renewal

3$/week*

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.