Natural hydrogen: France on the verge of redefining its national and European energy strategy

The official confirmation in June 2025 by the French government regarding the detection of significant natural hydrogen reserves in Lorraine, the Pyrenees, and Aquitaine could represent a major strategic turning point for national and European energy sovereignty. However, the technical, economic, and environmental challenges associated with its exploitation might slow its large-scale implementation.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

Natural hydrogen, also known as white hydrogen, previously considered marginal, is now emerging as a major strategic resource within the global energy context marked by energy transition and geopolitical tensions. Recent confirmation of hydrogen reserves in France, supported by preliminary estimates published by the French Institute of Petroleum and New Energies (IFPEN) in collaboration with the French Geological Survey (BRGM), radically changes the game and generates growing interest among industrial and financial players.

Massive reserves: Emergence of major energy hubs

According to an official report presented by the French Ministry of Economy and Industry in June 2025, Lorraine, particularly the coal basin of Folschviller, has an estimated natural hydrogen potential of approximately 46 million tons. This massive volume represents roughly half of the current global annual hydrogen production, estimated at around 95 million tons per year, over 95% of which is derived from fossil fuels (natural gas, oil, coal).

The potential identified at Folschviller by CNRS and the University of Lorraine is particularly significant due to its accessible depth, between 600 and 1,100 meters, with hydrogen concentrations estimated between 6% and 15%. An extrapolation to a depth of 3,000 meters places the total estimate at 46 million tons, positioning Lorraine at the heart of a major energy issue for decades to come (source: IFPEN, 2024).

Additionally, the Aquitaine Basin and the Pyrenean foothills have also been identified as having significant potential. TBH2 Aquitaine already holds an exclusive exploration permit (Sauve Terre H₂) in a promising zone within the Pyrénées-Atlantiques, where the first seismic campaigns are currently underway. The company 45-8 Energy, in partnership with Storengy (an ENGIE subsidiary), holds two permits covering 266 km² in the Pyrenees and 691 km² in the Landes, where comprehensive geophysical studies are also being conducted (source: Académie des Sciences, 2024).

Beyond these initially mentioned regions, other French territories are also emerging in ongoing studies. In Auvergne-Rhône-Alpes, Sudmine is currently exploring a 5.9 km² area in Puy-de-Dôme, where preliminary data also indicate significant potential, further reinforcing the hypothesis of even larger resources yet to be confirmed.

European context: Competition or energy cooperation?

France is not alone in exploring natural hydrogen in Europe. Other countries such as Spain, Italy, and Germany are also initiating similar exploration programs. Spain began preliminary studies in 2024 in the region of Castile-and-León, while Germany relies on industrial players like Storengy to assess potential resources, although definitive figures have not yet been published. In Italy, exploratory works are also underway in the Apennines, although the results have not yet been officially communicated (source: Carnot M.I.N.E.S., 2024).

This European dynamic fits into the broader context of the European Commission’s REPowerEU plan, which explicitly identifies natural hydrogen as a potential key resource to diversify Europe’s energy mix and secure long-term energy supplies in the face of geopolitical instability associated with fossil fuels.

Economic viability: Competitive costs but significant technical challenges

Early economic analyses presented by the French Academy of Sciences (2024) estimate extraction costs of natural hydrogen between €1 and €2/kg, compared to €4 to €8/kg for green hydrogen produced via water electrolysis. These estimates position natural hydrogen below the cost of grey hydrogen currently derived from natural gas (€1.5 to €2/kg). However, these costs depend on precise results from initial exploratory drillings planned for 2026 and mastery of infrastructure costs related to storage and transportation.

Indeed, technical management of natural hydrogen presents several complex challenges, notably related to its extreme volatility, low molecular weight, capture difficulty, and specialized infrastructure needed for underground storage. These factors imply significant upfront investments. For instance, TBH2 Aquitaine estimates several hundred million euros required for initial exploration and industrial capture phases (source: Carnot M.I.N.E.S., 2024).

Environment and social acceptability: Risks under close scrutiny

Although natural hydrogen is promoted as a “clean” energy that does not generate CO₂ upon direct extraction, the actual environmental impact remains to be precisely assessed, particularly concerning leakage risks potentially affecting underground water resources. Moreover, the necessity of deep drilling and specialized infrastructure may raise local concerns regarding groundwater quality, environmental security, and social acceptability.

The French regulatory framework, updated in 2022, already stipulates strict requirements concerning environmental impact studies and public consultations for any industrial natural hydrogen project. Although no structured opposition movement has emerged so far, transparency and public education regarding these projects remain essential conditions for their long-term success.

Conclusion and strategic perspectives: A revolution underway?

The official confirmation of significant natural hydrogen reserves in France places the country in front of a historic opportunity in terms of energy, economy, and geopolitics. According to the most optimistic estimates by IFPEN, natural hydrogen could represent between 15% and 20% of France’s domestic energy consumption by 2040, significantly strengthening France’s energy sovereignty and positioning the country as a key player in redefining the European energy landscape.

However, achieving this potential will require major investments, close coordination between public authorities and private players, and rigorous management of identified technical and environmental challenges. Initial drilling results planned for late 2026 will largely determine the trajectory of this promising but still largely unrealized industry.

Sources :

1. Rapport IFPEN-BRGM (2025) sur l’hydrogène natif en France
2. Carnot M.I.N.E.S. Livre Blanc “Produire, Stocker et utiliser l’Hydrogène” (2024)
3. Académie des Sciences, rapport “L’hydrogène aujourd’hui et demain” (2024)
4. Kamara (2024), stratégies d’utilisation du biohydrogène
5. Signoret (2024), Université de Franche-Comté, analyse stratégique de l’hydrogène natif
6. Rapport du ministère français de l’Économie et de l’Industrie (2025), perspectives nationales sur l’hydrogène natif
7. Commission Européenne, Plan REPowerEU (2024)

HDF Energy partners with ABB to design a multi-megawatt hydrogen fuel cell system for vessel propulsion and auxiliary power, strengthening their position in the global maritime market.
SONATRACH continues its integration strategy into the green hydrogen market, with the support of European partners, through the Algeria to Europe Hydrogen Alliance (ALTEH2A) and the SoutH2 Corridor, aimed at supplying Europe with clean energy.
Operator GASCADE has converted 400 kilometres of gas pipelines into a strategic hydrogen corridor between the Baltic Sea and Saxony-Anhalt, now operational.
Lummus Technology and Advanced Ionics have started construction of a pilot unit in Pasadena to test a new high-efficiency electrolysis technology, marking a step toward large-scale green hydrogen production.
Nel ASA launches the industrial phase of its pressurised alkaline technology, with an initial 1 GW production capacity and EU support of up to EUR135mn ($146mn).
Peregrine Hydrogen and Tasmania Energy Metals have signed a letter of intent to install an innovative electrolysis technology at the future nickel processing site in Bell Bay, Tasmania.
Elemental Clean Fuels will develop a 10-megawatt green hydrogen production facility in Kamloops, in partnership with Sc.wén̓wen Economic Development and Kruger Kamloops Pulp L.P., to replace part of the natural gas used at the industrial site.
Driven by green hydrogen demand and state-backed industrial plans, the global electrolyser market could reach $42.4bn by 2034, according to the latest forecast by Future Market Insights.
Driven by mobility and alkaline electrolysis, the global green hydrogen market is projected to grow at a rate of 60 % annually, reaching $74.81bn in 2032 from $2.79bn in 2025.
Plug Power will supply a 5MW PEM electrolyser to Hy2gen’s Sunrhyse project in Signes, marking a key step in expanding RFNBO-certified hydrogen in southern France.
The cross-border hydrogen transport network HY4Link receives recognition from the European Commission as a project of common interest, unlocking access to funding and integration into Europe’s energy infrastructure.
The withdrawal of Stellantis weakens Symbio, which is forced to drastically reduce its workforce at the Saint-Fons plant, despite significant industrial investment backed by both public and private stakeholders.
German steelmaker Thyssenkrupp plans to cut 11,000 jobs and reduce capacity by 25% as a condition to enable the sale of its steel division to India’s Jindal Steel.
Snam strengthens its position in hydrogen and CO₂ infrastructure with EU-backed SoutH2 corridor and Ravenna hub, both included in the 2025 list of strategic priorities for the European Union.
Driven by industrial demand and integration with renewable energy, the electrolyzer market is projected to grow 38.2% annually, rising from $2.08bn in 2025 to $14.48bn by 2031.
BrightHy Solutions, a subsidiary of Fusion Fuel, has signed a €1.7mn contract to supply a hydrogen refuelling station and electrolyser to a construction company operating in Southern Europe.
In Inner Mongolia, Xing’an League is deploying CNY6bn in public funds to build an integrated industrial ecosystem for hydrogen, ammonia and methanol production using local renewable resources.
Despite a drop in sales, thyssenkrupp nucera ends fiscal year 2024/2025 with operating profit, supported by stable electrolysis performance and positive cash flow.
ExxonMobil’s pause of the Baytown project highlights critical commercial gaps and reflects the impact of US federal cuts to low-carbon technologies.
State-owned Chinese group Datang commissions a project combining renewable energy and green hydrogen within a coal-to-chemicals complex in Inner Mongolia, aiming to reduce stranded asset risks while securing future industrial investments.

All the latest energy news, all the time

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.