Native Hydrogen: An Undiscovered Energy Potential

Native hydrogen is attracting the interest of companies and researchers. In-depth studies assess the size of the reserves, their potential profitability, and the most suitable extraction methods.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

Native hydrogen, often referred to as white hydrogen, has recently garnered significant attention in the energy industry. Unlike “green” or “gray” hydrogen, it results from geological processes without industrial intervention, such as electrolysis or hydrocarbon reforming. Some organizations, including the United States Geological Survey (USGS), estimate the global potential of this gas buried in the Earth’s crust to be billions of tons. Operators seeking diversification opportunities are focusing their efforts on precisely identifying deposits, with the prospect of a long-lasting supply.

Geological Resources and Capacity Estimates

Available data on native hydrogen is inconsistent. Some regions, such as oceanic ridges or ancient cratons, contain notable quantities of dihydrogen (H2) generated through the oxidation of iron-rich rocks. In these environments, water reacts with specific minerals, gradually releasing gaseous hydrogen. Current estimates, still partial, suggest that this process could continue over vast time scales, ensuring a continuous renewal.
Studies also point to the existence of shallower deposits, such as in Mali or parts of Europe. According to several surveys, hydrogen can rise along fractures and accumulate in underground reservoirs, sometimes associated with gases like helium or methane. The USGS has suggested an order of magnitude of one trillion tons of potentially recoverable hydrogen, based on cross-referencing various datasets. However, this evaluation remains hypothetical, as the geographic distribution and concentration of deposits vary considerably depending on the nature of the rocks.

Field Studies and Extraction Methods

Several companies are beginning to locate these resources using techniques derived from the oil sector. Drilling is a primary method for confirming the existence of a deposit, assessing the gas pressure and purity, and testing the economic feasibility of long-term exploitation. Hydrogen’s extreme lightness, which allows it to escape through even the smallest cracks, requires the use of enhanced sealing devices.
Research programs on this subject also focus on the chemical composition of the collected fluids. Often, native hydrogen coexists with other molecules. Separating hydrogen from other gases adds additional costs, unless the valorization of by-products like helium offsets part of the expenses. Universities and laboratories involved in these exploration efforts collaborate with industrial partners to improve the mastery of drilling, containment, and purification methods.

Potential, Costs, and Reserve Stability

Interest in native hydrogen is partly explained by its theoretically continuous supply model, which does not rely on a massive input of electricity or hydrocarbons. For several investors, it represents a complementary path to diversify the gas supply. Profitability estimates, however, depend on various factors, including the depth of reservoirs, the quality of the cap rock, and the logistical accessibility of the explored area.
Analysts highlight the difficulty of setting a standard production cost for geological hydrogen due to the unique characteristics of each basin. In some cases, volcanic rock or salt provides an almost airtight seal, allowing the accumulation of significant amounts of H2. In other areas, hydrogen disperses in the Earth’s crust, making recovery significantly more challenging. The issue of scaling storage infrastructure, either on-site or nearby, adds to the challenges of extraction.

Available Data and Market Outlook

Specialized exploration companies regularly publish technical reports documenting their findings. Some studies mention concentration ratios of up to 96% pure hydrogen in wells, potentially simplifying post-extraction processing. However, volumes must be sufficiently high to justify drilling and separation costs. Industry experts urge caution, as this emerging market depends on still-limited trials.
Several financial groups are interested in native hydrogen deposits, aiming to develop partnerships or even create new production centers. Gas industry executives stress the need to establish standards for safely handling and transporting this flammable gas. Legislative developments, such as the inclusion of native hydrogen in mining codes, encourage the advancement of pilot projects.

Operational Challenges and Scientific Collaborations

In-depth academic research is exploring the mechanisms behind natural hydrogen formation. Processes such as serpentinization, radiolysis (water splitting under radioactivity), or the decomposition of ultramafic rocks are major avenues to explain this gas’s emergence. Partnerships between laboratories and industrial actors are multiplying to characterize parameters like pressure, temperature, and water flow.
Companies involved in this white hydrogen niche are considering localized production to meet regional demands without relying on long transportation circuits. This approach could reduce emissions generated by logistics. Meanwhile, some consortiums are considering exports, packaging hydrogen in compressed or liquefied form, which requires more substantial infrastructure.

Ongoing Observations and Sectoral Adaptations

Drilling programs continue in various regions, including the United States, Australia, parts of Africa, and the Alpine arc in Europe. Initial measurements confirm the presence of hydrogen in these areas, with varying concentrations. Specialists remain attentive to the stability of the flow to determine whether production can be sustained over time.
Simultaneously, studies on the isotopic composition of dihydrogen guide the understanding of its deep or surface origin. This data, combined with analyses of fractures and faults, helps target the most promising locations. The shared goal among companies and research organizations is to reduce the economic risk of exploration.

Exploration, Industry Monitoring, and Regulatory Adjustments

Several countries have begun adapting their regulations to oversee the extraction of native hydrogen, recognizing it as a distinct gas resource. Legislative changes sometimes include environmental reporting clauses to monitor drilling and prevent potential local pollution. Traditional oil and gas entities are reviewing their portfolios, considering white hydrogen as a possible growth driver if demand strengthens.
The funding of these operations relies on a wide range of sources: major energy groups, mining companies, specialized investment funds, and even governments interested in energy diversification. Feedback from field pilots will determine the economic viability of this sector. If the results prove relevant, native hydrogen could complement existing commercialized hydrogen sources.

Asset manager Quinbrook expands its North American portfolio with a first Canadian investment by acquiring a strategic stake in developer Elemental Clean Fuels.
Lhyfe commissions a 10 MW site in Schwäbisch Gmünd, its first in Germany, to supply RFNBO-certified green hydrogen to industrial and heavy mobility clients.
Brookfield will invest up to $5 billion in Bloom Energy's fuel cells to power future artificial intelligence factories, initiating the first phase of a dedicated global digital infrastructure strategy.
Metacon acquired components from the bankruptcy estate of Hynion Sverige AB for SEK3.5mn ($320,000), aiming to support its hydrogen refuelling station projects in Sweden.
The United Kingdom has carried out its first real-life trial of green hydrogen blending into the national gas transmission network, with power generation as a result.
Swedish company Liquid Wind has secured €3.6mn in public funding for the engineering phase of its eMethanol plant, integrated into a biomass-fuelled cogeneration site.
The Japanese industrial group will replace a 73.5 MW coke and gas-fired turbine with a 30 to 40 MW hydrogen-ready unit, scheduled to start operations in 2030 with ¥7.1bn ($47mn) in public support.
A two-year project aims to identify areas in Texas suitable for natural hydrogen exploitation, despite challenges related to infrastructure, public policy and economic viability.
Plug Power has announced the appointment of Jose Luis Crespo as President effective October 10, before assuming the role of Chief Executive Officer once the company publishes its annual report, expected in March 2026.
Plug Power finalised a deal with an institutional investor to raise $370mn through the immediate exercise of warrants, with the possibility of securing an additional $1.4bn if new warrants are exercised.
Air Liquide announces a $50mn investment to strengthen its hydrogen network on the US Gulf Coast, following long-term contracts signed with two major American refiners.
Global demand for industrial gases will grow on the back of hydrogen expansion, carbon capture technologies, and advanced use in healthcare, electronics, and low-carbon fuel manufacturing.
Green ammonia reaches a new industrial milestone with 428 active projects and over $11bn in investments, highlighting accelerated sector growth across Asia, the Middle East, Europe and the Americas.
Nel Hydrogen US will supply a containerised electrolyser to H2 Energy for a hydrogen production facility commissioned by the Association for Waste Disposal in Buchs, Switzerland.
UK-based manufacturer ITM Power has signed an engineering contract for a green hydrogen project shortlisted under the country's second Hydrogen Allocation Round.
Agfa strengthens its industrial position with the launch of a ZIRFON membrane production site for electrolyzers, backed by a €11mn European subsidy.
Driven by Air Liquide and SEGULA Technologies, the ROAD TRHYP project aims to lower hydrogen transport costs and improve safety through a series of technical innovations by 2030.
Qair obtains structured bank financing of €55mn for its Hyd’Occ ecosystem, integrating renewable hydrogen production and distribution in Occitanie, with commissioning scheduled before the end of 2025.
Swedish firm Metacon has secured a EUR7.1mn ($7.7mn) contract to deliver a 7.5 MW electrolysis plant to Elektra Power SRL, marking its operational entry into the Romanian market.
The Clean Hydrogen Partnership has closed its first call for Project Development Assistance (PDA), totaling 36 applications from 18 countries. Results are expected in October, with support starting in November.

All the latest energy news, all the time

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.