Native Hydrogen: An Undiscovered Energy Potential

Native hydrogen is attracting the interest of companies and researchers. In-depth studies assess the size of the reserves, their potential profitability, and the most suitable extraction methods.

Share:

Subscribe for unlimited access to all the latest energy sector news.

Over 150 multisector articles and analyses every week.

For less than €3/week*

*For an annual commitment

*Engagement annuel à seulement 99 € (au lieu de 149 €), offre valable jusqu'au 30/07/2025 minuit.

Native hydrogen, often referred to as white hydrogen, has recently garnered significant attention in the energy industry. Unlike “green” or “gray” hydrogen, it results from geological processes without industrial intervention, such as electrolysis or hydrocarbon reforming. Some organizations, including the United States Geological Survey (USGS), estimate the global potential of this gas buried in the Earth’s crust to be billions of tons. Operators seeking diversification opportunities are focusing their efforts on precisely identifying deposits, with the prospect of a long-lasting supply.

Geological Resources and Capacity Estimates

Available data on native hydrogen is inconsistent. Some regions, such as oceanic ridges or ancient cratons, contain notable quantities of dihydrogen (H2) generated through the oxidation of iron-rich rocks. In these environments, water reacts with specific minerals, gradually releasing gaseous hydrogen. Current estimates, still partial, suggest that this process could continue over vast time scales, ensuring a continuous renewal.
Studies also point to the existence of shallower deposits, such as in Mali or parts of Europe. According to several surveys, hydrogen can rise along fractures and accumulate in underground reservoirs, sometimes associated with gases like helium or methane. The USGS has suggested an order of magnitude of one trillion tons of potentially recoverable hydrogen, based on cross-referencing various datasets. However, this evaluation remains hypothetical, as the geographic distribution and concentration of deposits vary considerably depending on the nature of the rocks.

Field Studies and Extraction Methods

Several companies are beginning to locate these resources using techniques derived from the oil sector. Drilling is a primary method for confirming the existence of a deposit, assessing the gas pressure and purity, and testing the economic feasibility of long-term exploitation. Hydrogen’s extreme lightness, which allows it to escape through even the smallest cracks, requires the use of enhanced sealing devices.
Research programs on this subject also focus on the chemical composition of the collected fluids. Often, native hydrogen coexists with other molecules. Separating hydrogen from other gases adds additional costs, unless the valorization of by-products like helium offsets part of the expenses. Universities and laboratories involved in these exploration efforts collaborate with industrial partners to improve the mastery of drilling, containment, and purification methods.

Potential, Costs, and Reserve Stability

Interest in native hydrogen is partly explained by its theoretically continuous supply model, which does not rely on a massive input of electricity or hydrocarbons. For several investors, it represents a complementary path to diversify the gas supply. Profitability estimates, however, depend on various factors, including the depth of reservoirs, the quality of the cap rock, and the logistical accessibility of the explored area.
Analysts highlight the difficulty of setting a standard production cost for geological hydrogen due to the unique characteristics of each basin. In some cases, volcanic rock or salt provides an almost airtight seal, allowing the accumulation of significant amounts of H2. In other areas, hydrogen disperses in the Earth’s crust, making recovery significantly more challenging. The issue of scaling storage infrastructure, either on-site or nearby, adds to the challenges of extraction.

Available Data and Market Outlook

Specialized exploration companies regularly publish technical reports documenting their findings. Some studies mention concentration ratios of up to 96% pure hydrogen in wells, potentially simplifying post-extraction processing. However, volumes must be sufficiently high to justify drilling and separation costs. Industry experts urge caution, as this emerging market depends on still-limited trials.
Several financial groups are interested in native hydrogen deposits, aiming to develop partnerships or even create new production centers. Gas industry executives stress the need to establish standards for safely handling and transporting this flammable gas. Legislative developments, such as the inclusion of native hydrogen in mining codes, encourage the advancement of pilot projects.

Operational Challenges and Scientific Collaborations

In-depth academic research is exploring the mechanisms behind natural hydrogen formation. Processes such as serpentinization, radiolysis (water splitting under radioactivity), or the decomposition of ultramafic rocks are major avenues to explain this gas’s emergence. Partnerships between laboratories and industrial actors are multiplying to characterize parameters like pressure, temperature, and water flow.
Companies involved in this white hydrogen niche are considering localized production to meet regional demands without relying on long transportation circuits. This approach could reduce emissions generated by logistics. Meanwhile, some consortiums are considering exports, packaging hydrogen in compressed or liquefied form, which requires more substantial infrastructure.

Ongoing Observations and Sectoral Adaptations

Drilling programs continue in various regions, including the United States, Australia, parts of Africa, and the Alpine arc in Europe. Initial measurements confirm the presence of hydrogen in these areas, with varying concentrations. Specialists remain attentive to the stability of the flow to determine whether production can be sustained over time.
Simultaneously, studies on the isotopic composition of dihydrogen guide the understanding of its deep or surface origin. This data, combined with analyses of fractures and faults, helps target the most promising locations. The shared goal among companies and research organizations is to reduce the economic risk of exploration.

Exploration, Industry Monitoring, and Regulatory Adjustments

Several countries have begun adapting their regulations to oversee the extraction of native hydrogen, recognizing it as a distinct gas resource. Legislative changes sometimes include environmental reporting clauses to monitor drilling and prevent potential local pollution. Traditional oil and gas entities are reviewing their portfolios, considering white hydrogen as a possible growth driver if demand strengthens.
The funding of these operations relies on a wide range of sources: major energy groups, mining companies, specialized investment funds, and even governments interested in energy diversification. Feedback from field pilots will determine the economic viability of this sector. If the results prove relevant, native hydrogen could complement existing commercialized hydrogen sources.

Endua, an Australian technology company, has received $4.88mn in public funding to strengthen its capacity to produce modular hydrogen electrolysers, supporting the expansion of local supply chains and industrial development within the hydrogen sector.
HydrogenXT secures a $900mn agreement with Kell Kapital Partners Limited to develop the first ten local zero-carbon blue hydrogen plants along key logistics corridors in the United States.
Elogen completes delivery of a 2.5 MW proton exchange membrane electrolyser for the Baseload Power Hub, linked to the Hollandse Kust Noord offshore wind farm and operated by CrossWind joint venture.
Fotowatio Renewable Ventures joins forces with Envision Energy for the H2 Cumbuco project, aiming for a 500MW green ammonia plant targeting Brazilian, European, and Asian markets.
Element 2 strengthens its partnership with HRS to install a mobile hydrogen station in Glasgow, as part of its expansion strategy for its refuelling network in the United Kingdom and Ireland.
Global hydrogen development, supported by more than 1,500 ongoing projects and significant investments, is driving strong demand for insurance coverage, with potential estimated at over USD3bn in annual premiums by 2030.
ArcelorMittal Brazil begins a collaboration with Utility Global to develop a clean hydrogen project using the patented H2Gen system, aimed at producing up to 3 tons per day at the Juiz de Fora plant.
ENERTRAG announces the acquisition of a plot in Prenzlau to install a 130 megawatt green hydrogen production unit, with a planned investment of €300 mn, thereby supporting the regional economy and local industrial sector.
H2APEX Group SCA has completed a EUR30mn ($32.5mn) capital increase to finance the acquisition of HH2E Werk Lubmin GmbH and support the development of its hydrogen project in Germany. —
Next Hydrogen launches the largest onsite clean hydrogen production and distribution station in Ontario, capable of supplying up to 650 kg per day for powering fuel cell forklifts.
A 5,500-horsepower harbour vessel was bunkered with green ammonia at the Dalian terminal, marking the creation of a full value chain for this fuel and a technical milestone for the maritime sector.
Air Liquide begins construction of the ELYgator electrolyser in Rotterdam, a 200 MW project, supported by the Dutch government and an investment exceeding €500 mn.
A pilot project in Germany aims to produce green hydrogen at sea directly from untreated seawater on offshore wind farms, using marine bacteria and robust materials.
BP withdraws from the Australian Renewable Energy Hub, a major renewable hydrogen and ammonia project in the Pilbara region, marking a new stage for energy investments in Australia.
Next Hydrogen raises CAD1.5mn from its management and a commercial lender to strengthen its cash flow and retain teams, while maintaining its review of financial and strategic solutions.
The first European citizen funding campaign dedicated to green hydrogen enabled Lhyfe to collect €2.5mn from nearly 1,200 investors, strengthening the development of new sites in France and Germany.
In the face of renewable energy intermittency, Power-to-Hydrogen-to-Power (PtP) technology could revolutionize energy storage. However, its adoption still depends on cost reduction and efficiency improvements.
South Korean company YPP and Kazakh Invest have signed a framework agreement for the development of a green hydrogen production project in Kazakhstan, with investments potentially reaching $3.1 billion.
The Dutch government has granted major funding to HyCC for its H2eron electrolysis project, aimed at producing renewable hydrogen in the Delfzijl industrial zone.
ACWA Power has signed several agreements with European partners to develop a green energy export chain between Saudi Arabia and Europe, as part of the India-Middle East-Europe Economic Corridor project.
Consent Preferences