NANO Nuclear explores micro-nuclear technology for space conquest

NANO Nuclear Space is working on adapting its micronuclear reactors for space missions, with a focus on cis-lunar space.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

NANO Nuclear Space, a new subsidiary of NANO Nuclear Energy, is positioning itself to adapt its micronuclear reactors for use in space. These portable reactors, initially designed for terrestrial applications, could meet the specific energy needs of space missions.
Among the flagship projects, the ZEUS and ODIN reactors will be optimized for missions in orbit around the Moon, a key area for future commercial and scientific activities.
Cis-lunar space, defined as the region between the Earth and the Moon, represents a strategic challenge for the space industry.
This sector is booming, stimulated by private and public initiatives seeking to exploit lunar resources, while developing sustainable infrastructures to support human presence.
NANO Nuclear’s compact, powerful micronuclear reactors could provide a viable solution for powering equipment and infrastructure in this challenging environment.

Practical applications in cis-lunar space

NANO Nuclear Space’s current projects focus mainly on providing energy for orbital stations and lunar bases.
The ZEUS reactor, a solid-state nuclear battery, and the ODIN reactor, using a low-pressure cooling system, are technologies suited to these contexts, where reliability and energy autonomy are critical.
Indeed, space presents unique challenges in terms of temperature, radiation and insulation, requiring resilient energy systems.
NANO Nuclear relies on the ability of its reactors to operate in isolated environments, where support resources are limited.
In the context of cis-lunar missions, these reactors could not only power manned facilities, but also play a key role in lunar resource extraction, in-orbit manufacturing, and potentially in the propulsion of long-distance missions.
This diversification of applications represents a strategic opportunity for NANO Nuclear, which aims to capitalize on the boom in commercial space projects.

Strategic outlook and challenges

The development of micronuclear reactors for space is part of a wider trend to diversify energy sources for space exploration.
While traditional space agencies such as NASA and ESA are increasingly turning to public-private partnerships, companies like NANO Nuclear are looking to get involved in these initiatives.
Cis-lunar space, with projects such as NASA’s Artemis, represents an immediate field of application for these technologies.
Nuclear reactors could become essential for continuously powering lunar bases and other critical infrastructures.
At the same time, the growing interest in exploiting lunar resources, particularly the extraction of rare elements, opens up significant economic prospects.
Sustainable energy systems, such as those proposed by NANO Nuclear, will be crucial to support these activities in the long term, minimizing dependence on terrestrial supplies.
This energy independence would ensure continuity of operations, even in environments where maintenance and resupply are complex.

Cutting-edge technology and international collaboration

NANO Nuclear’s recent acquisition of Annular Linear Induction Pump (ALIP) technology, developed by Carlos O. Maidana, Ph.D., represents a major technological advance for cooling and thermal management in nuclear reactors. This innovation improves the management of high-temperature fluids, which is crucial to the energy efficiency and safety of nuclear systems in space environments. In addition to its applications in heat management, this technology could be extended to propulsion systems, opening up new possibilities for longer-term missions in space. International cooperation also plays a key role in the development of these projects. Partnerships with state and private players around the world, including the USA and Europe, will be needed to finance and test these reactors under real-life conditions. Tests planned in environments simulating lunar and Martian conditions will be crucial to validate the technical feasibility of these reactors before they are deployed in space.

A future focused on energy resilience

The adaptation of micronuclear reactors for space missions marks a turning point in the evolution of energy technologies.
As energy requirements increase with the intensification of activities in space, the question of infrastructure resilience becomes paramount.
Portable, autonomous reactors, such as those developed by NANO Nuclear, offer an appropriate response to these challenges.
Their ability to operate for extended periods without frequent maintenance makes them ideal candidates for missions in remote and difficult-to-access areas.
Space, with its inherent challenges of radiation, vacuum and extreme temperatures, represents an ideal laboratory for testing these technologies.
If these reactors prove their reliability in these hostile environments, they could also have terrestrial applications, particularly in remote areas or in emergency situations.
The deployment of these reactors could thus transform energy supply in contexts where traditional infrastructures are unavailable or unsuitable.

French state utility EDF has increased the maximum estimated cost for building six new nuclear reactors to €72.8 billion ($85.29 billion), representing a 40% rise over the original figure.
US-based Holtec has signed a memorandum of understanding with Hungary’s energy group MVM to assess the deployment of its SMR-300 technology, strengthening bilateral nuclear cooperation and opening prospects for a new market in Central Europe.
California-based startup Radiant has secured $300mn to build its first factory in Tennessee and prepare for the mass production of miniature nuclear reactors for off-grid applications.
Terra Innovatum has increased its interactions with the Nuclear Regulatory Commission to advance licensing of its SOLO™ micro-modular reactor, despite the partial shutdown of the US federal government.
The US nuclear regulator has extended the operating licences of three Illinois reactors by 20 years, strengthening Constellation's long-term industrial outlook for the Clinton and Dresden sites.
The SATURNE Industrial Chair aims to develop innovative uranium extraction methods, with joint funding from Orano and the National Research Agency over a four-year period.
US-based X-energy has signed a reservation agreement with South Korea's Doosan Enerbility to secure key components for its small modular nuclear reactors.
Samsung Heavy Industries has received Approval in Principle for a floating nuclear plant featuring two SMART100 reactors, marking a step toward the commercialisation of offshore small modular reactors.
The Indian government proposes a unified legal framework for nuclear energy, aiming to boost private investment and increase installed capacity to 100 GW by 2047.
Samsung C&T strengthens its presence in modular nuclear energy in Europe by signing an agreement with Synthos Green Energy to develop up to 24 SMRs in Poland and several Central European countries.
Israeli firm nT-Tao and Ben-Gurion University have developed a nonlinear control system that improves energy stability in fusion plasmas, strengthening the technical foundation of their future compact reactors.
The Indian government has introduced a bill allowing private companies to build and operate nuclear power plants, ending a state monopoly in place for over five decades.
Natura Resources enters a new regulatory phase for its molten salt reactor MSR-1, following the signing of a framework agreement with the US Department of Energy under the Reactor Pilot Program.
Norwegian Nuclear Decommissioning is surveying 22 localities to assess their interest in hosting storage facilities for radioactive waste from the country’s former research reactors.
Electricité de France's Flamanville 3 reactor has reached full power for the first time, marking a key industrial milestone in the deployment of EPRs in Europe, despite cost overruns reaching EUR23.7bn ($25.7bn).
GE Vernova Hitachi’s BWRX-300 small modular reactor has passed a key regulatory hurdle in the United Kingdom, opening the door to potential commercial deployment, despite no current plans for construction.
Molten salt reactor developer Natura Resources has acquired Shepherd Power and partnered with NOV to scale up modular reactor manufacturing by the next decade.
China National Nuclear Corporation expects commercial operation in 2026 for its ACP100 reactor, following successful cold testing and completion of critical structures in 2025.
Start-up SEATOM has been selected to join NATO's DIANA programme with its micro nuclear reactor designed for extreme environments, reinforcing its position in dual-use marine and military energy technologies.
The Estonian Ministry of Economic Affairs has opened a tender to select a site and conduct initial environmental studies for a 600 MW nuclear power plant, marking a decisive step for the country’s energy future.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.