NANO Nuclear explores micro-nuclear technology for space conquest

NANO Nuclear Space is working on adapting its micronuclear reactors for space missions, with a focus on cis-lunar space.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

NANO Nuclear Space, a new subsidiary of NANO Nuclear Energy, is positioning itself to adapt its micronuclear reactors for use in space. These portable reactors, initially designed for terrestrial applications, could meet the specific energy needs of space missions.
Among the flagship projects, the ZEUS and ODIN reactors will be optimized for missions in orbit around the Moon, a key area for future commercial and scientific activities.
Cis-lunar space, defined as the region between the Earth and the Moon, represents a strategic challenge for the space industry.
This sector is booming, stimulated by private and public initiatives seeking to exploit lunar resources, while developing sustainable infrastructures to support human presence.
NANO Nuclear’s compact, powerful micronuclear reactors could provide a viable solution for powering equipment and infrastructure in this challenging environment.

Practical applications in cis-lunar space

NANO Nuclear Space’s current projects focus mainly on providing energy for orbital stations and lunar bases.
The ZEUS reactor, a solid-state nuclear battery, and the ODIN reactor, using a low-pressure cooling system, are technologies suited to these contexts, where reliability and energy autonomy are critical.
Indeed, space presents unique challenges in terms of temperature, radiation and insulation, requiring resilient energy systems.
NANO Nuclear relies on the ability of its reactors to operate in isolated environments, where support resources are limited.
In the context of cis-lunar missions, these reactors could not only power manned facilities, but also play a key role in lunar resource extraction, in-orbit manufacturing, and potentially in the propulsion of long-distance missions.
This diversification of applications represents a strategic opportunity for NANO Nuclear, which aims to capitalize on the boom in commercial space projects.

Strategic outlook and challenges

The development of micronuclear reactors for space is part of a wider trend to diversify energy sources for space exploration.
While traditional space agencies such as NASA and ESA are increasingly turning to public-private partnerships, companies like NANO Nuclear are looking to get involved in these initiatives.
Cis-lunar space, with projects such as NASA’s Artemis, represents an immediate field of application for these technologies.
Nuclear reactors could become essential for continuously powering lunar bases and other critical infrastructures.
At the same time, the growing interest in exploiting lunar resources, particularly the extraction of rare elements, opens up significant economic prospects.
Sustainable energy systems, such as those proposed by NANO Nuclear, will be crucial to support these activities in the long term, minimizing dependence on terrestrial supplies.
This energy independence would ensure continuity of operations, even in environments where maintenance and resupply are complex.

Cutting-edge technology and international collaboration

NANO Nuclear’s recent acquisition of Annular Linear Induction Pump (ALIP) technology, developed by Carlos O. Maidana, Ph.D., represents a major technological advance for cooling and thermal management in nuclear reactors. This innovation improves the management of high-temperature fluids, which is crucial to the energy efficiency and safety of nuclear systems in space environments. In addition to its applications in heat management, this technology could be extended to propulsion systems, opening up new possibilities for longer-term missions in space. International cooperation also plays a key role in the development of these projects. Partnerships with state and private players around the world, including the USA and Europe, will be needed to finance and test these reactors under real-life conditions. Tests planned in environments simulating lunar and Martian conditions will be crucial to validate the technical feasibility of these reactors before they are deployed in space.

A future focused on energy resilience

The adaptation of micronuclear reactors for space missions marks a turning point in the evolution of energy technologies.
As energy requirements increase with the intensification of activities in space, the question of infrastructure resilience becomes paramount.
Portable, autonomous reactors, such as those developed by NANO Nuclear, offer an appropriate response to these challenges.
Their ability to operate for extended periods without frequent maintenance makes them ideal candidates for missions in remote and difficult-to-access areas.
Space, with its inherent challenges of radiation, vacuum and extreme temperatures, represents an ideal laboratory for testing these technologies.
If these reactors prove their reliability in these hostile environments, they could also have terrestrial applications, particularly in remote areas or in emergency situations.
The deployment of these reactors could thus transform energy supply in contexts where traditional infrastructures are unavailable or unsuitable.

Deep Fission is installing a 15 MWe pressurised reactor 1.6 km underground at Great Plains Industrial Park, under the Department of Energy’s accelerated pilot programme, targeting criticality by July 4, 2026.
EDF commits to supply 33 MW of nuclear electricity to Verkor over 12 years, enabling the battery manufacturer to stabilise energy costs ahead of launching its first Gigafactory.
The full-scope simulator for the Lianjiang nuclear project has successfully passed factory acceptance testing, paving the way for its installation at the construction site in China's Guangdong province.
A coalition of Danish industry groups, unions and investors launches a platform in support of modular nuclear power, aiming to develop firm low-carbon capacity to sustain industrial competitiveness.
The United Kingdom and TAE Technologies create a joint venture in Culham to produce neutral beams, a key component of fusion, with strategic backing from Google.
Texas-based developer Natura Resources receives new federal funding to test key components of its 100-megawatt modular reactor in partnership with Oak Ridge National Laboratory.
The Niigata regional assembly is deliberating on restarting unit 6 of the world’s largest nuclear plant, thirteen years after operations ceased following the Fukushima disaster.
Reactor Doel 2 was taken offline, becoming the fifth Belgian reactor to cease operations under the country’s gradual nuclear phase-out policy.
Rolls-Royce SMR has expanded its partnership with ÚJV Řež to accelerate the deployment of small modular reactors, targeting the construction of several units in the Czech Republic and abroad.
The Indian government aims to amend legislation to allow private companies to participate in civil nuclear development, a move positioned as critical to achieving the country’s long-term energy targets.
The VVER-1200 nuclear reactor at Xudabao 4 in China has completed installation of its final passive water tank, marking the end of modular construction for the second phase of the project.
Ottawa and Edmonton commit to a nuclear production roadmap by 2050, through a memorandum of understanding also covering carbon capture and an Indigenous-led pipeline project.
Niamey asserts control over its uranium resources by authorising open market sales of Somaïr’s production, formerly operated by France’s Orano, amid ongoing legal disputes.
Equinix has signed a strategic agreement with French start-up Stellaria to reserve 500 MWe of advanced nuclear capacity to power its future European AI data centres starting in 2035.
Bishkek plans to host a RITM-200N small modular reactor supplied by Rosatom to address electricity shortages and deepen energy ties with Moscow, despite the risks posed by Western sanctions.
The Niigata prefectural assembly will vote on the restart of Unit 6, potentially marking TEPCO’s first reactor relaunch since the 2011 Fukushima disaster.
The Norwegian government has initiated a consultation with neighbouring countries on its modular nuclear power plant project in Aure and Heim, in accordance with the Espoo Convention.
Türkiye and South Korea have signed a memorandum of understanding to jointly explore nuclear power plant projects, marking a strategic step in the long-term development of Türkiye's energy infrastructure.
Asian Development Bank has amended its energy policy to enable funding for civil nuclear projects in developing member countries across the Asia-Pacific region.
First Hydrogen begins research with the University of Alberta to identify molten-salt mixtures simulating nuclear fuels for SMR prototypes.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.