Magnetic field record achieved by Realta Fusion and Wisconsin Uni

Realta Fusion, in partnership with the University of Wisconsin, has established a record 17 Tesla magnetic field in a fusion plasma, marking a crucial step towards commercial fusion energy.

Share:

Record champ magnétique fusion

The achievement of new records in fusion energy represents a significant step towards the realization of a clean and sustainable energy source. Realta Fusion, a fusion energy start-up in the USA, in collaboration with researchers at the University of Wisconsin, recently set a new record for the magnetic field in a fusion plasma. The magnetic field achieved is 17 Tesla, a crucial milestone for the development of commercial fusion energy systems.
The project, known as Wisconsin HTS Axisymmetric Mirror (WHAM), is the first to use high-temperature superconducting (HTS) magnets in a magnetic mirror configuration. These advances enable plasma to be confined at unprecedented levels of density, paving the way for more efficient and cost-effective fusion energy systems. In addition to private investment, the US authorities, via the Department of Energy, have announced a new energy revolution thanks to nuclear fusion.

A major technological advance

Magnetic Confinement Fusion (MCF) involves creating the conditions necessary for fusion by trapping a high-energy plasma in a “magnetic bottle”. The use of ultra-high-field magnets is a key technical step towards the realization of fusion energy systems. The WHAM device is the first to integrate HTS magnets with multiple high-power plasma heating systems and advanced plasma control.
According to Professor Cary Forest of the University of Wisconsin and Scientific Director of Realta Fusion, “This is the culmination of an immense effort by the WHAM team, and a significant step towards fusion power plants. With the WHAM experiment, we have combined advances in superconductor technology and plasma physics to demonstrate the potential of the compact magnetic mirror as a fusion energy system.”

Rediscovery and innovation

The magnetic mirror was one of the main concepts of fusion energy in the USA until the 1980s, when the technology of the time limited the control of magnetically confined plasma. Recent advances in superconductor technology – notably HTS magnets – and plasma stability control encouraged Professor Forest, Dr. Jay Anderson (Senior Scientist at the University of Wisconsin and co-founder of Realta Fusion) and their collaborators to revisit the magnetic mirror and design a much more compact and less expensive system than previous experiments.
“What we’ve demonstrated today puts the compact magnetic mirror back in the race towards commercial fusion energy. It’s a quantum leap for a concept that promises economically viable, carbon-free heat and power,” said Kieran Furlong, CEO of Realta Fusion.
Realta Fusion, a private company backed by venture capitalists, emerged from the WHAM project in 2022 with the mission of developing a fusion energy system based on the WHAM concept. Realta scientists worked alongside researchers from the University of Wisconsin to achieve this milestone. Realta continues to fund and staff the ongoing WHAM project through a sponsored research agreement with the University of Wisconsin. The ARPA-E division of the U.S. Department of Energy has invested over $10 million in the project, with significant contributions from the University of Wisconsin, the Wisconsin Alumni Research Foundation (WARF), Commonwealth Fusion Systems (CFS) and other partners. CFS designed and manufactured the two 17 T axisymmetric HTS magnets used in the experiment.
The success of this demonstration confirms the technical feasibility of magnetic mirror fusion and brings the industry one step closer to commercial fusion energy. Further research could revolutionize the global energy landscape by providing an abundant, clean and sustainable source of energy.

Bahrain has concluded a civil nuclear agreement with the United States and formalised a commitment of $17bn in public investments in the US market, further strengthening bilateral cooperation.
Kairos Power has installed the vessel for its third test prototype in Oak Ridge, aiming to validate manufacturing methods for its future Hermes reactor supported by the US Department of Energy.
London and Prague formalise a strategic partnership to develop the nuclear sector, focusing on small modular reactors and industrial cooperation on supply chains.
Experts have broadly approved France’s Cigéo deep nuclear waste repository project, highlighting technical uncertainties that demand stronger guarantees for long-term safety.
Uzbekistan advances its nuclear project by signing a protocol with Hungary for the supply and local assembly of dry cooling systems, expanding its industrial partnerships in the region.
Polskie Elektrownie Jądrowe is asking the European Commission to review its $49bn investment to build Poland’s first nuclear power plant, a step required under the Euratom Treaty before any construction permit can be issued.
The International Atomic Energy Agency mission completed on July 11 warns that the National Nuclear Safety Administration must hire staff to oversee a fleet of 59 reactors in operation and 32 more under construction.
Energoatom signed strategic agreements with Westinghouse and Holtec at the Ukraine Recovery Conference, aiming to establish nuclear fuel production and small modular reactor capabilities in the country.
Tehran agrees to reopen its nuclear facilities to the IAEA, aiming to resume negotiations with Washington, while Moscow pushes for a “zero enrichment” agreement without getting involved in supervision.
TerraPower has selected three new American suppliers for its advanced Natrium nuclear reactor, confirming progress on the project located in Kemmerer, Wyoming, intended to replace a retiring coal-fired power plant.
Energy Exploration Technologies acquires Daytona Lithium, an Australian subsidiary of Pantera Lithium, for AUD40mn ($27mn), bringing its strategic lithium basin footprint in Smackover, USA to nearly 50,000 acres.
The Canadian Nuclear Safety Commission has identified no major barriers to licensing the ARC-100 reactor, announces ARC Clean Technology.
SE Ignalina, the Lithuanian nuclear operator, has signed a memorandum of understanding with French firm Newcleo to explore the integration of small modular reactors (SMRs) using lead-cooled fast reactor (LFR) technology in Lithuania.
Egyptian President Abdel Fattah al-Sisi oversaw the signing of new agreements for the construction of the El Dabaa nuclear power plant, thus strengthening the strategic cooperation between Egypt and Russia.
Vistra Corp receives green light to extend Perry nuclear plant operations in Ohio by 20 years, securing regional electricity supply until 2046 and ensuring operational continuity for all its nuclear reactors in the United States.
EDF will hold a 12.5% stake in the Sizewell C nuclear project in the UK, a €1.3 billion investment announced during Emmanuel Macron’s official visit to London, confirming the strategic nuclear energy alignment between the two countries.
The French Cigéo project, designed to bury the most hazardous radioactive waste deep underground, obtains a crucial technical validation before its final authorization, expected by the end of 2027.
EDF confirms the continuation of its industrial project in Fessenheim for recycling very low-level radioactive metals, a first in France requiring specific regulatory authorizations, following a public debate concluded last February.
NANO Nuclear Energy Inc. formalizes its collaboration with UrAmerica Ltd. to strengthen Argentina’s uranium supply, aiming to secure future nuclear fuel supply chains for the U.S. market.
American companies SHINE Technologies and Standard Nuclear partner to recycle uranium and plutonium, supplying advanced fuel to the nuclear reactor sector and enhancing the national energy security of the United States.