LFR technology development: A promising partnership between Westinghouse and Ansaldo Nucleare

Westinghouse and Ansaldo Nucleare have signed a cooperation agreement to develop leaded fast reactor (LFR) technology. This partnership is an important step toward a cleaner, safer and more economically competitive energy future.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

Under a cooperation agreement signed in October 2022, Westinghouse and Ansaldo Nucleare have committed to develop LFR (Lead Fast Reactor) technology.

The agreement will allow the two companies to pool their design, testing and licensing expertise, while aligning their respective partner and supply chain organizations. The agreement strengthens development activities already underway in the UK, US, Italy and Romania, where more than ten state-of-the-art lead-based testing facilities are being installed.

Ansaldo Nucleare: Key partner in the design of experimental facilities for Westinghouse LFR technology

The test campaign at Ansaldo’s PHRF facility is part of a Phase 2 contract for the Advanced Modular Reactor (AMR) program, partially funded by the UK Department for Business, Energy and Industrial Strategy and awarded to Westinghouse with Ansaldo Nucleare as the prime contractor. Under this contract, Ansaldo Nucleare was responsible for the design, procurement, installation and commissioning of two state-of-the-art experimental facilities to support Westinghouse’s LFR technology: the Versatile Loop Facility and the Passive Heat Removal Facility.

According to the World Nuclear Association, leaded fast reactors are “flexible fast reactors that can use depleted uranium or thorium fuel matrices, and burn actinides from light water reactor fuels. Cooling with liquid metal (Pb or Pb-Bi eutectic) is done at atmospheric pressure by natural convection (at least for the removal of residual heat). By using depleted uranium or thorium fuel matrices and recycling actinides from light water reactor fuels, LFRs contribute to the reduction of nuclear waste and more efficient use of available resources.

The fuel can be metal or nitride, with complete recycling of actinides from regional plants or centralized reprocessing plants. A wide range of unit sizes is envisioned, from prefabricated “batteries” with a 15-20 year lifespan for small-scale power grids or developing countries, to 300-400 MWe modules and large 1400 MWe plants.”

LFR Reactor: Moving beyond baseload power generation with thermal energy storage

According to Westinghouse, its LFR reactor is “a medium-sized, passively safe modular reactor being developed to reduce capital costs and generate flexible, competitive electricity. The LFR achieves new levels of energy affordability by adopting innovative design features to simplify and compact the installation, while enhanced construction modularity shortens the construction schedule.”

He claims that the use of lead as a coolant, with a boiling point in excess of 1700°C, allows high-temperature operation at atmospheric pressure without the problem of boiling coolant. This increases thermodynamic efficiency, reduces capital costs and facilitates the achievement of inherent safety compared to pressurized systems. “LFR has the ability to go beyond baseload power generation by using a thermal energy storage system for load balancing,” he adds.

The partnership between Westinghouse and Ansaldo Nucleare to develop LFR technology paves the way for significant advances in Generation IV nuclear reactors. With their state-of-the-art testing facilities and combined expertise, the two companies are well positioned to accelerate the development and commercialization of this promising technology. The use of LFRs could offer benefits such as improved energy efficiency, increased safety, and the ability to meet a diverse range of energy needs, including cogeneration and water desalination.

A Cleaner, More Sustainable Energy Future: The Potential of LFR for Competitive Energy

The transition to the large-scale test phase marks an important step in the development of the LFR. The experimental data collected from these test facilities will be used to validate existing models and simulations, improve the performance of the reactor, and identify potential design changes. This data-driven approach builds confidence in LFR technology and paves the way for its future widespread adoption.

In addition, the ability of LFR to store thermal energy offers interesting possibilities for electrical load balancing, as well as for cogeneration of electricity and heat, and water desalination in specific markets.

Through their data-driven approach and joint efforts, Westinghouse and Ansaldo Nucleare are committed to advancing LFR technology and making it viable at large scale. This promising partnership marks an important milestone in the realization of advanced nuclear reactors and paves the way for a cleaner, more sustainable energy future.

For example, the collaboration between Westinghouse and Ansaldo Nucleare to develop LFR technology demonstrates a commitment to innovation and advancement in nuclear power. The LFR offers considerable potential for clean, safe and economically competitive energy, and this collaboration marks a key step in its development.

The Idaho National Laboratory has started irradiation testing on uranium-zirconium fuel samples from Lightbridge in its experimental reactor, marking a key step toward the industrial validation of advanced nuclear fuel.
NexGen Energy has opened Canadian Nuclear Safety Commission hearings for the final approval of its Rook I uranium project, following more than six years of regulatory process.
Oklo has signed a binding agreement with Siemens Energy to accelerate manufacturing of the energy conversion system for its first advanced nuclear power plant in the United States.
A security document handling incident at the nuclear power plant renews concerns about TEPCO as a key decision on restarting reactors 6 and 7 approaches in Niigata.
An initial civil nuclear cooperation agreement was signed between the United States and Saudi Arabia, prompting calls from the US Congress for strict safeguards to prevent a Middle East arms race.
The launch of the Zhaoyuan nuclear project anchors the Hualong One model inland, illustrating Beijing’s strategy of regulatory normalisation in response to Western technological restrictions.
TRISO-X has started above-ground works on the first U.S. facility dedicated to manufacturing fuel for small modular reactors, marking a key industrial milestone in the deployment of the Xe-100.
The first Russian test rig for the experimental ITER reactor has been delivered to the site in France, marking a major milestone in the international collaboration on nuclear fusion.
A strategic report reveals the industrial and energy potential of Allseas’ offshore small modular reactor, which could create up to 40,000 jobs and reduce investment in the power grid.
Canadian firm Aecon and private developer Norsk Kjernekraft have signed a strategic agreement targeting the deployment of BWRX-300 small modular reactors across several potential locations in Norway.
The South African government has officially lifted the PBMR reactor out of inactivity, launching a public investment programme and transferring the strategic nuclear asset from Eskom to Necsa.
The French Court of Auditors values EDF’s grand carénage at over €100bn, while EPR2 reactors already exceed €67–75bn. The State simultaneously directs regulation, financing, and industrial strategy, raising the risk of conflict of interest.
Belarus commits major public investment to add a third reactor at the Ostrovets plant and initiates studies for a second nuclear site to support national energy demand.
Framatome’s accident-tolerant fuel prototype has completed a second 24-month cycle in a commercial nuclear reactor in the United States, paving the way for a third phase of industrial testing.
The Wylfa site in Wales will host three Rolls-Royce small modular reactors from 2026, marking a strategic investment in the UK’s nuclear expansion.
EDF confirmed that the Flamanville EPR has reached a major milestone, while planning a nearly year-long shutdown in 2026 for extensive regulatory inspections and key component replacement.
EDF is opening access to its long-term nuclear supply contracts to companies consuming more than 7 GWh per year, an adjustment driven by the gradual end of the Arenh mechanism.
South Korean authorities have approved the continued operation of the Kori 2 reactor for an additional eight years, marking a key milestone in the national nuclear strategy.
A public-private consortium is developing a 5 MW thermal microreactor designed to operate without refuelling for ten years, marking a strategic step in Brazil's nuclear innovation efforts.
EDF has announced that the Flamanville EPR reactor is now operating at 80% of its capacity. The target of reaching full output by the end of autumn remains confirmed by the utility.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.