LFR technology development: A promising partnership between Westinghouse and Ansaldo Nucleare

Westinghouse and Ansaldo Nucleare have signed a cooperation agreement to develop leaded fast reactor (LFR) technology. This partnership is an important step toward a cleaner, safer and more economically competitive energy future.

Share:

Gain full professional access to energynews.pro from 4.90€/month.
Designed for decision-makers, with no long-term commitment.

Over 30,000 articles published since 2021.
150 new market analyses every week to decode global energy trends.

Monthly Digital PRO PASS

Immediate Access
4.90€/month*

No commitment – cancel anytime, activation in 2 minutes.

*Special launch offer: 1st month at the indicated price, then 14.90 €/month, no long-term commitment.

Annual Digital PRO Pass

Full Annual Access
99€/year*

To access all of energynews.pro without any limits

*Introductory annual price for year one, automatically renewed at 149.00 €/year from the second year.

Under a cooperation agreement signed in October 2022, Westinghouse and Ansaldo Nucleare have committed to develop LFR (Lead Fast Reactor) technology.

The agreement will allow the two companies to pool their design, testing and licensing expertise, while aligning their respective partner and supply chain organizations. The agreement strengthens development activities already underway in the UK, US, Italy and Romania, where more than ten state-of-the-art lead-based testing facilities are being installed.

Ansaldo Nucleare: Key partner in the design of experimental facilities for Westinghouse LFR technology

The test campaign at Ansaldo’s PHRF facility is part of a Phase 2 contract for the Advanced Modular Reactor (AMR) program, partially funded by the UK Department for Business, Energy and Industrial Strategy and awarded to Westinghouse with Ansaldo Nucleare as the prime contractor. Under this contract, Ansaldo Nucleare was responsible for the design, procurement, installation and commissioning of two state-of-the-art experimental facilities to support Westinghouse’s LFR technology: the Versatile Loop Facility and the Passive Heat Removal Facility.

According to the World Nuclear Association, leaded fast reactors are “flexible fast reactors that can use depleted uranium or thorium fuel matrices, and burn actinides from light water reactor fuels. Cooling with liquid metal (Pb or Pb-Bi eutectic) is done at atmospheric pressure by natural convection (at least for the removal of residual heat). By using depleted uranium or thorium fuel matrices and recycling actinides from light water reactor fuels, LFRs contribute to the reduction of nuclear waste and more efficient use of available resources.

The fuel can be metal or nitride, with complete recycling of actinides from regional plants or centralized reprocessing plants. A wide range of unit sizes is envisioned, from prefabricated “batteries” with a 15-20 year lifespan for small-scale power grids or developing countries, to 300-400 MWe modules and large 1400 MWe plants.”

LFR Reactor: Moving beyond baseload power generation with thermal energy storage

According to Westinghouse, its LFR reactor is “a medium-sized, passively safe modular reactor being developed to reduce capital costs and generate flexible, competitive electricity. The LFR achieves new levels of energy affordability by adopting innovative design features to simplify and compact the installation, while enhanced construction modularity shortens the construction schedule.”

He claims that the use of lead as a coolant, with a boiling point in excess of 1700°C, allows high-temperature operation at atmospheric pressure without the problem of boiling coolant. This increases thermodynamic efficiency, reduces capital costs and facilitates the achievement of inherent safety compared to pressurized systems. “LFR has the ability to go beyond baseload power generation by using a thermal energy storage system for load balancing,” he adds.

The partnership between Westinghouse and Ansaldo Nucleare to develop LFR technology paves the way for significant advances in Generation IV nuclear reactors. With their state-of-the-art testing facilities and combined expertise, the two companies are well positioned to accelerate the development and commercialization of this promising technology. The use of LFRs could offer benefits such as improved energy efficiency, increased safety, and the ability to meet a diverse range of energy needs, including cogeneration and water desalination.

A Cleaner, More Sustainable Energy Future: The Potential of LFR for Competitive Energy

The transition to the large-scale test phase marks an important step in the development of the LFR. The experimental data collected from these test facilities will be used to validate existing models and simulations, improve the performance of the reactor, and identify potential design changes. This data-driven approach builds confidence in LFR technology and paves the way for its future widespread adoption.

In addition, the ability of LFR to store thermal energy offers interesting possibilities for electrical load balancing, as well as for cogeneration of electricity and heat, and water desalination in specific markets.

Through their data-driven approach and joint efforts, Westinghouse and Ansaldo Nucleare are committed to advancing LFR technology and making it viable at large scale. This promising partnership marks an important milestone in the realization of advanced nuclear reactors and paves the way for a cleaner, more sustainable energy future.

For example, the collaboration between Westinghouse and Ansaldo Nucleare to develop LFR technology demonstrates a commitment to innovation and advancement in nuclear power. The LFR offers considerable potential for clean, safe and economically competitive energy, and this collaboration marks a key step in its development.

Validation of underground injection permits by the U.S. Environmental Protection Agency strengthens Dewey Burdock’s regulatory position and paves the way for state permitting expected in 2025.
Facing energy security challenges, several Southeast Asian countries are turning to nuclear and could invest up to $208bn to reach 25 GW of capacity, favouring small modular reactors.
A strategic partnership between the United Kingdom and the United States aims to shorten nuclear licensing timelines and strengthen industrial cooperation around fusion and modular reactors.
The International Atomic Energy Agency projects global nuclear capacity to reach 992 GW by 2050, driven by small modular reactors and lifetime extensions of existing plants.
Premier American Uranium and Nuclear Fuels have announced a target date of around September 19 to finalise their strategic consolidation, pending final approval from the TSX Venture Exchange.
The General Court of the European Union has rejected Austria’s appeal against the inclusion of gas and nuclear energy in the classification of sustainable investments.
Kazakhstan has signed an agreement with Nukem Technologies Engineering Services GmbH to benefit from German expertise in nuclear decommissioning and radioactive waste management.
The European Court of Justice annulled the European Commission's authorisation of Hungarian state aid for the Paks II nuclear project, questioning compliance with EU public procurement rules.
A Chinese consortium has secured a CNY4.2bn ($594mn) contract for the construction of conventional islands for the Xuwei nuclear project, combining third and fourth generation reactors.
Rosatom and China National Nuclear Corporation signed a memorandum of understanding to strengthen bilateral cooperation in talent development and skills training in the nuclear sector.
Iran has reached a new agreement with the International Atomic Energy Agency to formalise the resumption of inspections, following months of suspension linked to military tensions and criticism of its nuclear programme.
The French Energy Regulatory Commission outlines a structured plan to accelerate the deployment of small modular reactors, focusing on industrial heat and series effects to enhance competitiveness.
US-based Nuclearn has secured $10.5mn to scale its artificial intelligence platform, already deployed in over 65 nuclear reactors, to automate critical operations amid rising energy demand.
The steel dome of the CAP1000 Haiyang 4 reactor has been positioned, a major construction milestone paving the way for upcoming maintenance and technical installation phases.
The Groupement des Industriels Français de l'Énergie Nucléaire and the Belgian Nuclear Forum formalise a partnership aimed at strengthening industrial exchanges and joint projects between the two countries’ nuclear sectors.
The International Atomic Energy Agency warns that little time remains to reach an agreement with Iran on fully resuming inspections, as European sanctions could be reimposed within 30 days.
Slovenia’s JEK2 project moves forward with two nuclear technologies judged technically compatible, estimated between EUR9.31bn ($10.1bn) and EUR15.37bn ($16.66bn).
US-based Oklo will build the country’s first privately funded nuclear fuel recycling centre in Oak Ridge, investing $1.7bn and creating over 800 jobs.
The Tennessee Valley Authority partners with ENTRA1 Energy to develop up to 6 gigawatts of modular nuclear capacity, in an unprecedented project supporting energy growth across seven U.S. states.
A report by the International Atomic Energy Agency puts Iran’s 60% enriched uranium at 440.9 kg before Israeli and U.S. strikes, while the agency’s access to enrichment sites has remained suspended since the operations.

Log in to read this article

You'll also have access to a selection of our best content.