Helical Fusion predicts a stable nuclear fusion reactor for 2034

Helical Fusion aims to develop a stable nuclear fusion reactor by 2034, marking an important step towards emission-free energy production and reinforcing Japan's energy strategy.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

Helical Fusion, a Japanese start-up specializing in nuclear fusion, plans to launch the world’s first stable nuclear fusion reactor by 2034.
Using the “helical method”, a magnetic approach developed in collaboration with Japan’s National Institute for Fusion Science (NIFS), the project aims to generate electricity without greenhouse gas emissions or long-lived nuclear waste.
The initiative could potentially transform the energy strategy of Japan, a country heavily dependent on imported fossil fuels. Nuclear fusion differs from fission in its process: two light atomic nuclei fuse together to create a heavier nucleus, releasing a large amount of energy.
Unlike traditional fission reactors, this technology promises energy without the production of long-term radioactive waste.
However, the technical and economic challenges remain numerous.
Current research, while having demonstrated the possibility of maintaining a plasma at temperatures in excess of 100 million degrees Celsius for several thousand seconds, has not yet led to a commercially viable solution.

Investments and Technological Challenges

Helical Fusion has estimated that construction of the pilot reactor, scheduled for 2034, will require an investment of around 1 trillion yen.
This project will build on the 400 billion yen already invested by Japan in the development of nuclear fusion at NIFS.
The high cost of this technology is explained by the need for sophisticated equipment, in particular for the development of high-temperature superconducting coils, essential for maintaining plasma confinement and ensuring reactor stability.
In addition, major regulatory challenges remain.
Implementing such a project requires adapting the Japanese regulatory framework, as well as obtaining multiple construction and safety authorizations.
These regulations are designed to minimize the risks associated with handling extremely high temperatures, and to ensure that all safety measures are in place to prevent incidents.

Impact on Japan’s Energy Security

The success of this project could have major implications for Japan’s energy security.
As a net energy importer, Japan is vulnerable to fluctuations in international commodity prices and geopolitical tensions.
The possibility of producing electricity from nuclear fusion could offer the country greater energy autonomy, reducing its dependence on fossil fuels.
The Japanese government is closely monitoring developments in the field of nuclear fusion, which it sees as an essential component of its energy diversification strategy.
By drawing on the research and development capabilities of NIFS, Helical Fusion hopes to overcome the technical obstacles that have held back the commercialization of this technology to date.

Global Perspectives and Future Developments

The Helical Fusion reactor project is not only of national importance; it also has international implications.
At a time when many countries, including the United States, China and the European Union, are investing heavily in nuclear fusion research, Japan could position itself as a technological leader in this field.
However, success will depend on the company’s ability to meet several major challenges: securing the necessary funding, mastering the complex technology of magnetic confinement, and gaining political and social support for the construction and operation of the facilities.
In addition to these technical considerations, international collaboration could play a crucial role in moving the project forward.
Growing interest in public-private partnerships in the fusion field could also provide funding and knowledge-sharing opportunities, accelerating development towards a commercially viable model.
Foreign investment and strategic alliances will be key to sustaining technological innovation and industrial scale-up.

Molten salt reactor developer Natura Resources has acquired Shepherd Power and partnered with NOV to scale up modular reactor manufacturing by the next decade.
China National Nuclear Corporation expects commercial operation in 2026 for its ACP100 reactor, following successful cold testing and completion of critical structures in 2025.
Start-up SEATOM has been selected to join NATO's DIANA programme with its micro nuclear reactor designed for extreme environments, reinforcing its position in dual-use marine and military energy technologies.
The Estonian Ministry of Economic Affairs has opened a tender to select a site and conduct initial environmental studies for a 600 MW nuclear power plant, marking a decisive step for the country’s energy future.
The European Commission has approved Poland's financial support plan for its first nuclear power plant, a €42bn project backed by public funding, state guarantees, and a contract for difference mechanism.
Six European nuclear authorities have completed the second phase of a joint review of the Nuward modular reactor, a key step toward aligning regulatory frameworks for small nuclear reactors across Europe.
Driven by off-grid industrial heat demand and decarbonisation mandates, the global small modular reactor market is set to grow 24% annually through 2030, with installed capacity expected to triple within five years.
US fusion energy leaders have called on the federal government to redirect public funding towards their projects, arguing that large-scale investment is needed to stay competitive with China.
Santee Cooper has approved a memorandum of understanding with Brookfield Asset Management to assess the feasibility of restarting two unfinished nuclear reactors, with a potential $2.7 billion payment and 550 MW capacity stake.
Helical Fusion has signed a landmark agreement with Aoki Super to supply electricity from fusion, marking a first in Japan’s energy sector and a commercial step forward for the helical stellarator technology.
India’s nuclear capacity is expected to grow by more than 13,000 MW by 2032, driven by ongoing heavy water reactor construction, new regional projects and small modular reactor development by the Bhabha Atomic Research Centre.
NextEra Energy has lifted its earnings estimates for 2025 and 2026, supported by power demand linked to long‑term contracts previously signed with Google and Meta to supply their artificial intelligence data centres with low‑carbon electricity.
London launches a complete regulatory overhaul of its nuclear industry to shorten authorisation timelines, expand eligible sites, and lower construction and financing costs.
Finland's Ministry of Economic Affairs extends the deadline to June 2026 for the regulator to complete its review of the operating licence for the Olkiluoto spent nuclear fuel repository.
The conditional green light from the nuclear regulator moves Cigéo into its final regulatory stage, while shifting the risks towards financing, territorial negotiations and industrial execution.
The drone strike confirmed by the IAEA on the Chernobyl site vault exposes Ukraine to a nuclear risk under armed conflict, forcing the EBRD to finance partial restoration while industry standards must now account for drone threats.
Deep Fission is installing a 15 MWe pressurised reactor 1.6 km underground at Great Plains Industrial Park, under the Department of Energy’s accelerated pilot programme, targeting criticality by July 4, 2026.
EDF commits to supply 33 MW of nuclear electricity to Verkor over 12 years, enabling the battery manufacturer to stabilise energy costs ahead of launching its first Gigafactory.
The full-scope simulator for the Lianjiang nuclear project has successfully passed factory acceptance testing, paving the way for its installation at the construction site in China's Guangdong province.
A coalition of Danish industry groups, unions and investors launches a platform in support of modular nuclear power, aiming to develop firm low-carbon capacity to sustain industrial competitiveness.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.