Greenwater project boosts energy stability in the American Northwest

The Greenwater project, a 200 MW energy storage system, is designed to improve Puget Sound Energy's energy management, meeting the growing demands for reliability in the Washington region.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

The energy sector in the northwestern United States is facing increased pressure from rising demand for electricity, particularly in the areas served by Puget Sound Energy (PSE).
The Greenwater Battery Energy Storage System (BESS) project, with a capacity of 200 MW/800 MWh, is designed to meet these challenges by providing a reserve of energy that can be mobilized during periods of high demand or when renewable energy production fluctuates.
This project is part of a growing trend in which storage systems are playing a crucial role in balancing power grids.
As renewable production capacities increase, the question of energy storage becomes essential to guarantee grid stability.
Greenwater provides a direct response to this issue, enabling stored energy to be discharged as and when required, thus reinforcing security of supply throughout the area covered by PSE.

Cost and infrastructure optimization

Unlike traditional transmission infrastructures, which are often costly and time-consuming to deploy, the Greenwater project has the advantage of reducing the need for new transmission lines.
Located in Pierce County, close to centers of consumption, it limits investment in long transmission infrastructures, which are both costly and have an impact on the environment.
Storage systems like Greenwater are also more flexible and responsive.
By storing energy when it is produced in excess (notably from renewable sources such as solar and wind power), BESS can then redistribute this energy during consumption peaks, thus avoiding shortages and reducing dependence on non-renewable energy sources during these critical periods.

A project in line with regional objectives

The Greenwater project is in line with the regional objectives set by the Western Resource Adequacy Program (WRAP), whose aim is to guarantee a reliable and affordable energy supply in the Northwest region of the United States.
The flexibility provided by this storage system will contribute to the optimal management of renewable electricity production, facilitating the integration of intermittent energies into the grid while ensuring continuity of service.
In addition, compliance with the requirements of the Clean Energy Transformation Act (CETA) requires Puget Sound Energy to increase the share of renewable energies in its energy mix, while guaranteeing maximum reliability.
The Greenwater project meets these legal obligations by strengthening PSE’s ability to maintain continuous service, even in the most extreme conditions, such as intense heat waves or cold.

Economic impact and community benefits

Beyond the technical aspects, the Greenwater project also represents a significant economic gain for the region.
The implementation of this storage system will generate significant fiscal spin-offs, estimated at $43 million, which will directly benefit local infrastructures such as schools, emergency services and public transport.
The project also plans to support education by funding STEM (science, technology, engineering and mathematics) programs in local schools, a key element in strengthening the skills of younger generations in rapidly developing sectors such as renewable energies.
This support for education is seen as a strategic investment in the region’s future, helping to train tomorrow’s talent.

Long-term prospects and emerging business models

The Greenwater project is part of a series of initiatives aimed at strengthening the region’s energy independence, while paving the way for a business model in which energy storage will play a central role.
The multiplication of similar projects is essential to enable energy companies to better manage the intermittent production of renewable energies and guarantee reliable service in all seasons.
The returns on investment for Puget Sound Energy and its partners should be significant, both in terms of reduced operating costs and improved grid stability.
With increased storage capacity, the company will be able to better anticipate fluctuations in demand and avoid the penalties associated with service cuts or interruptions.
Greenwater’s success could also encourage the development of other storage projects in the region, thereby contributing to the energy transition and the achievement of decarbonization objectives.

China's electricity market overhaul improves the profitability of energy storage, supporting a rapid increase in battery exports as global demand rises with data centres and power grids.
South Korea’s Tilda accelerates its entry into Vietnam with an artificial intelligence-based energy optimisation solution for solar and energy storage systems in the manufacturing sector.
Aegis Critical Energy Defence Corp. and Seetel New Energy have created Cordelia BESS to respond to Ontario’s LT2 call for proposals, aimed at strengthening energy capacity through battery storage.
esVolta finalises investment tax credit transfer for its Black Walnut storage project to Computacenter, marking a first-of-its-kind operation within its California energy portfolio.
Peregrine Energy Solutions has begun construction on a 500 MWh storage project in Texas, relying on Wärtsilä's technology and WHC's engineering expertise to enhance ERCOT grid flexibility.
The world's largest battery energy storage system enters service in Saudi Arabia, with an annual capacity of 2.2 billion kWh spread across three strategic sites in the southwest of the country.
Masdar begins commercial operations at a Stockport battery storage unit and announces two more UK projects, part of a £1bn ($1.25bn) plan for 3GWh of BESS capacity.
Australia-based storage platform Akaysha Energy has launched its first operational project, a 155 MW battery in Queensland, while confirming its expansion to over 1 GWh.
LehmanSoft Japan connected a 2MW/8.1MWh energy storage facility to the grid in Chichibu City, marking its entry into the Japanese stationary storage market.
Akuo launches a large-scale electricity storage project in Boulouparis, with a 200 MWh capacity, to support New Caledonia’s grid stability and reinforce the integration of renewable energies.
Spie and Tesla have signed a framework agreement to install battery electricity storage systems in Europe, focusing on France, Poland and Germany.
The group has won a strategic project with operator Amprion to deploy five 50 MW batteries to ease pressure on the German power grid and optimise electricity transmission.
Vena Energy has begun construction of a 408 MWh battery energy storage system in Tailem Bend, marking a new phase in the deployment of its infrastructure in Australia.
The explosion of battery storage applications in Germany is causing grid congestion and pushing Berlin to revise its regulatory framework to prevent market saturation.
The collapse in storage costs positions batteries as a key lever for dispatchable solar, but dependence on Chinese suppliers creates growing tension between competitiveness and supply chain security.
JA Solar has launched a microgrid combining 5.2 MW of solar and 2.61 MWh of storage at an industrial site in Sicily, marking its first application of the "PV+Storage+X" model in Italy.
Sinexcel has installed a 2MW/8MWh energy storage system in Matsusaka, marking a breakthrough in a regulated market after five years of technical partnerships and gradual deployment in Japan.
Inlyte Energy has successfully completed factory validation testing of its first full-scale iron-sodium battery, witnessed by Southern Company, paving the way for a pilot installation in the United States in early 2026.
Neoen begins construction of a new 305 MW stage in Australia, raising its total battery storage capacity in the country to 2 GW, and signs two additional virtual battery contracts with ENGIE.
ENGIE has awarded NHOA Energy the contract for a 320 MWh battery energy storage system in Drogenbos, marking a new step in their industrial partnership in Belgium.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.