Greenwater project boosts energy stability in the American Northwest

The Greenwater project, a 200 MW energy storage system, is designed to improve Puget Sound Energy's energy management, meeting the growing demands for reliability in the Washington region.

Share:

Comprehensive energy news coverage, updated nonstop

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

7-Day Pass

Up to 50 articles accessible for 7 days, with no automatic renewal

3 $/week*

FREE ACCOUNT

3 articles/month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 30,000 articles • 150+ analyses per week

The energy sector in the northwestern United States is facing increased pressure from rising demand for electricity, particularly in the areas served by Puget Sound Energy (PSE).
The Greenwater Battery Energy Storage System (BESS) project, with a capacity of 200 MW/800 MWh, is designed to meet these challenges by providing a reserve of energy that can be mobilized during periods of high demand or when renewable energy production fluctuates.
This project is part of a growing trend in which storage systems are playing a crucial role in balancing power grids.
As renewable production capacities increase, the question of energy storage becomes essential to guarantee grid stability.
Greenwater provides a direct response to this issue, enabling stored energy to be discharged as and when required, thus reinforcing security of supply throughout the area covered by PSE.

Cost and infrastructure optimization

Unlike traditional transmission infrastructures, which are often costly and time-consuming to deploy, the Greenwater project has the advantage of reducing the need for new transmission lines.
Located in Pierce County, close to centers of consumption, it limits investment in long transmission infrastructures, which are both costly and have an impact on the environment.
Storage systems like Greenwater are also more flexible and responsive.
By storing energy when it is produced in excess (notably from renewable sources such as solar and wind power), BESS can then redistribute this energy during consumption peaks, thus avoiding shortages and reducing dependence on non-renewable energy sources during these critical periods.

A project in line with regional objectives

The Greenwater project is in line with the regional objectives set by the Western Resource Adequacy Program (WRAP), whose aim is to guarantee a reliable and affordable energy supply in the Northwest region of the United States.
The flexibility provided by this storage system will contribute to the optimal management of renewable electricity production, facilitating the integration of intermittent energies into the grid while ensuring continuity of service.
In addition, compliance with the requirements of the Clean Energy Transformation Act (CETA) requires Puget Sound Energy to increase the share of renewable energies in its energy mix, while guaranteeing maximum reliability.
The Greenwater project meets these legal obligations by strengthening PSE’s ability to maintain continuous service, even in the most extreme conditions, such as intense heat waves or cold.

Economic impact and community benefits

Beyond the technical aspects, the Greenwater project also represents a significant economic gain for the region.
The implementation of this storage system will generate significant fiscal spin-offs, estimated at $43 million, which will directly benefit local infrastructures such as schools, emergency services and public transport.
The project also plans to support education by funding STEM (science, technology, engineering and mathematics) programs in local schools, a key element in strengthening the skills of younger generations in rapidly developing sectors such as renewable energies.
This support for education is seen as a strategic investment in the region’s future, helping to train tomorrow’s talent.

Long-term prospects and emerging business models

The Greenwater project is part of a series of initiatives aimed at strengthening the region’s energy independence, while paving the way for a business model in which energy storage will play a central role.
The multiplication of similar projects is essential to enable energy companies to better manage the intermittent production of renewable energies and guarantee reliable service in all seasons.
The returns on investment for Puget Sound Energy and its partners should be significant, both in terms of reduced operating costs and improved grid stability.
With increased storage capacity, the company will be able to better anticipate fluctuations in demand and avoid the penalties associated with service cuts or interruptions.
Greenwater’s success could also encourage the development of other storage projects in the region, thereby contributing to the energy transition and the achievement of decarbonization objectives.

US-based startup Base Power secures $1bn in Series C funding to boost domestic energy equipment production and expand its distributed storage platform nationwide.
Clean Energy Technologies has signed a letter of intent to lead multiple battery energy storage system projects across New York State, with each site planned for 5 MW of capacity.
The Hagersville Energy Storage Park, led by Boralex and SNGRDC, was awarded for its planned 300 MW capacity, making it Canada’s largest battery storage site.
Nala Renewables strengthens its position in Finland with the acquisition of a battery energy storage portfolio exceeding 250 MW from Swiss developer Fu-Gen AG.
The Japanese group has started construction of a 20MW battery energy storage system in Hokkaido, aiming for commissioning in 2027 with support from PowerX and Kyocera Communication Systems.
Nightpeak Energy has launched commercial operations of Bocanova Power, a 150 MW battery storage facility near Houston, to meet rapidly growing energy demand in Texas.
Neoen has launched construction of its first long-duration battery in Muchea and commissioned the second stage of Collie Battery, bringing its storage capacity in Western Australia to 3,145 MWh.
Ottawa invests CAD22mn ($16.1mn) to support eight technology initiatives aimed at strengthening innovation, local production, and competitiveness in the country's battery supply chain.
Neoen begins construction of its first six-hour discharge battery in Western Australia and commissions the second phase of Collie, surpassing 3 GWh of storage capacity in the State.
Transgrid plans to contract up to 5 GW of grid-forming batteries to strengthen the stability of New South Wales’ electricity network during the energy transition.
The US energy storage market set a quarterly record with 5.6 GW installed, driven by utility-scale projects despite ongoing regulatory uncertainty.
Storage provider HiTHIUM will supply 2GWh of batteries to Solarpro for multiple large-scale projects across the Balkans and Central Europe.
The three Japanese groups announced two new high-voltage battery projects in Shizuoka and Ibaraki prefectures, bringing their joint portfolio to four facilities with a combined capacity of 180MW.
EVE Energy seals a 500MWh strategic agreement with CommVOLT in Europe for commercial and industrial storage at Solar & Storage Live UK 2025, as its five MWh direct current system enters deployment.
Energy Vault Holdings has secured $50mn in debenture financing, complementing a $300mn preferred equity investment, to support the development of its large-scale energy storage projects.
Grenergy reported €86mn in EBITDA in the first half of 2025 and raised its investments to €421mn, supported by increased energy sales and major storage operations.
The 400 MWh energy storage system installed by RWE in Limondale becomes the longest-duration grid-connected battery in Australia, with full commissioning expected by the end of the year.
A steel site in Taizhou now hosts Jiangsu’s largest behind-the-meter energy storage system, with 120 MW of output and 240 MWh of capacity, developed by Jingjiang Taifu New Energy.
Braille Energy Systems will directly integrate the distribution of its lithium battery line for drag racing, previously managed by Tony Christian Racing, consolidating its motorsport operations starting October 1.
NorthX Climate Tech commits $1.6mn to three Canadian energy storage firms, supporting the development of localised grid solutions in British Columbia and Alberta.

All the latest energy news, all the time

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

7 DAY PASS

Up to 50 items can be consulted for 7 days,
without automatic renewal

3$/week*

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.