Energy Innovation: Duke Energy Launches Green Hydrogen

Duke Energy and GE Vernova join forces to create a green hydrogen system, a commercial first for advanced power generation.

Share:

Hydrogène vert avenir énergétique

Gain full professional access to energynews.pro from 4.90$/month.
Designed for decision-makers, with no long-term commitment.

Over 30,000 articles published since 2021.
150 new market analyses every week to decode global energy trends.

Monthly Digital PRO PASS

Immediate Access
4.90$/month*

No commitment – cancel anytime, activation in 2 minutes.

*Special launch offer: 1st month at the indicated price, then 14.90 $/month, no long-term commitment.

Annual Digital PRO Pass

Full Annual Access
99$/year*

To access all of energynews.pro without any limits

*Introductory annual price for year one, automatically renewed at 149.00 $/year from the second year.

The energy transition takes a major turn with the announcement of the collaboration between Duke Energy and GE Vernova. Their innovative project, scheduled to be operational in 2024, aims to establish a completegreen hydrogen system within the DeBary power plant, located not far from Orlando, Florida.

GE Vernova’s Key Role in the Integration of Green Hydrogen

This innovative system, a world first, will use green hydrogen to generate electricity during periods of high demand. Hydrogen will be produced, stored and used on the plant site. The initiative marks a significant step forward in the use of hydrogen as a clean alternative to fossil fuels.

Production and Use of Green Hydrogen for Peak Load Energy

GE Vernova will play a crucial role in integrating the gas turbine with green hydrogen. The project will involve upgrading one of the four GE 7E gas turbines already installed on site, enabling the use of hydrogen mixtures at significant volumes. This first commercial operation represents a major breakthrough in the energy sector.

Perspectives and Implications of the Energy Transition with Hydrogen

Regis Repko, Senior Vice President of Generation and Transmission Strategy at Duke Energy, underlines the importance of this project. He believes that the combination of these technologies will decarbonize gas turbines, transforming them into dispatchable assets that support the addition of more renewables to the power grid.

Technical specifications and capacities of the DeBary power plant

To support this project, GE is working with Duke Energy to assess the plant’s hydrogen readiness in 2021. Once the electrolysis equipment and hydrogen storage capacity have been installed on site, GE Vernova will make the necessary modifications to the existing gas turbine infrastructure. These modifications include the installation of fuel handling systems, valves and piping adapted to higher hydrogen mixtures and up to 100% hydrogen (by volume).

Impact and Future of Hydrogen in the Energy Sector

When fully operational, the 83-megawatt (MW) 7E gas turbine will have the capacity to run on natural gas, liquid fuel, 100% hydrogen, or a mixture of natural gas and hydrogen. This complete flexibility in terms of fuel and operation will maintain the plant’s reliability.
The DeBary plant, located north of Orlando, comprises a 74.5MW solar power plant covering an area equivalent to almost 200 soccer fields, and a 692MW gas-fired power plant for reliable power reserve. The plant is powered by six GE 7B and four GE 7E gas turbines.

This partnership between Duke Energy and GE Vernova represents a significant breakthrough in clean energy production. DeBary’s project promises not only to decarbonize gas turbines, but also to provide a reliable and sustainable solution to the growing need for electricity.

Lhyfe has started supplying Essent with renewable green hydrogen under a multi-year contract, marking a major commercial debut in the Netherlands for the French producer.
The Dutch government grants major funding to RWE to develop an offshore wind-powered electrolysis facility, marking a key step in the OranjeWind project.
ScottishPower pauses its renewable hydrogen projects in the United Kingdom, despite receiving public subsidies, citing a lack of commercial viability under the HAR1 programme.
thyssenkrupp nucera has completed the purchase of key assets from Green Hydrogen Systems, strengthening its position in pressurised alkaline electrolysis for industrial hydrogen production.
GH2 Solar Ltd partners with AHES Ltd to build an electrolyzer plant in Gwalior, targeting 500 MW capacity by 2030 with $19mn government support.
A cooperation agreement, a bilateral carbon-credit mechanism and converging standards lay the ground for India→Japan hydrogen and ammonia flows, with volume targets, price-support schemes and first export projects scaling up.
Hydrogen offtake agreements are multiplying, with Germany and Japan leading, mobilizing producers and industrial buyers in a still nascent but already highly competitive market.
Vema Hydrogen mobilise des experts internationaux pour accélérer la mise sur le marché de son hydrogène minéral, alors que l’entreprise prévoit de forer ses premiers puits pilotes en Amérique du Nord d’ici la fin de l’année.
First Public Hydrogen Authority opens a request for proposals to transport gaseous and liquid hydrogen across California, with a deadline set for September 12.
US-based manufacturer Ohmium unveils a new generation of modular electrolysers integrating all production systems within a reduced footprint, aiming to lower installation and operating costs for green hydrogen.
ABO Energy and Hydropulse join forces to develop decentralised green hydrogen production units in Europe, with Spain and Finland as priority markets.
Next Hydrogen secures two separate loans, including one from its executives, to consolidate liquidity and continue operations while evaluating long-term financial solutions.
Metacon receives EUR 14.9 million from Motor Oil Hellas for the approved delivery of ten electrolysis units, marking the first stage of a strategic industrial project in Greece.
The European Union’s regulatory framework mandates green hydrogen integration in refineries, generating projected demand of 0.5 million tonnes by 2030.
Air Products transported over 50 tanker trucks to the Kennedy Space Center to fill the world’s largest liquid hydrogen tank, supporting NASA’s Artemis missions.
Driven by federal incentives, hydrogen hubs and industrial demand, the U.S. green hydrogen market shows a compound annual growth rate of 63.8% through 2032.
According to the Oxford Institute for Energy Studies, the adoption of low-carbon ammonia in maritime transport faces economic, regulatory, and safety barriers, despite growing international pressure to reduce emissions from the global fleet.
Despite declining revenues, Next Hydrogen maintains operational continuity in Q2 2025 through new private and institutional financing.
Transition Industries assigns Bonatti to build core infrastructure for Pacifico Mexinol, a strategic methanol complex in Mexico poised to become a major global player.
GeoPura has acquired key assets from Green Hydrogen Systems and opened a subsidiary in Denmark to support its expansion in hydrogen electrolyser production and maintenance.

Log in to read this article

You'll also have access to a selection of our best content.