Energy Innovation: Duke Energy Launches Green Hydrogen

Duke Energy and GE Vernova join forces to create a green hydrogen system, a commercial first for advanced power generation.

Share:

Hydrogène vert avenir énergétique

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

The energy transition takes a major turn with the announcement of the collaboration between Duke Energy and GE Vernova. Their innovative project, scheduled to be operational in 2024, aims to establish a completegreen hydrogen system within the DeBary power plant, located not far from Orlando, Florida.

GE Vernova’s Key Role in the Integration of Green Hydrogen

This innovative system, a world first, will use green hydrogen to generate electricity during periods of high demand. Hydrogen will be produced, stored and used on the plant site. The initiative marks a significant step forward in the use of hydrogen as a clean alternative to fossil fuels.

Production and Use of Green Hydrogen for Peak Load Energy

GE Vernova will play a crucial role in integrating the gas turbine with green hydrogen. The project will involve upgrading one of the four GE 7E gas turbines already installed on site, enabling the use of hydrogen mixtures at significant volumes. This first commercial operation represents a major breakthrough in the energy sector.

Perspectives and Implications of the Energy Transition with Hydrogen

Regis Repko, Senior Vice President of Generation and Transmission Strategy at Duke Energy, underlines the importance of this project. He believes that the combination of these technologies will decarbonize gas turbines, transforming them into dispatchable assets that support the addition of more renewables to the power grid.

Technical specifications and capacities of the DeBary power plant

To support this project, GE is working with Duke Energy to assess the plant’s hydrogen readiness in 2021. Once the electrolysis equipment and hydrogen storage capacity have been installed on site, GE Vernova will make the necessary modifications to the existing gas turbine infrastructure. These modifications include the installation of fuel handling systems, valves and piping adapted to higher hydrogen mixtures and up to 100% hydrogen (by volume).

Impact and Future of Hydrogen in the Energy Sector

When fully operational, the 83-megawatt (MW) 7E gas turbine will have the capacity to run on natural gas, liquid fuel, 100% hydrogen, or a mixture of natural gas and hydrogen. This complete flexibility in terms of fuel and operation will maintain the plant’s reliability.
The DeBary plant, located north of Orlando, comprises a 74.5MW solar power plant covering an area equivalent to almost 200 soccer fields, and a 692MW gas-fired power plant for reliable power reserve. The plant is powered by six GE 7B and four GE 7E gas turbines.

This partnership between Duke Energy and GE Vernova represents a significant breakthrough in clean energy production. DeBary’s project promises not only to decarbonize gas turbines, but also to provide a reliable and sustainable solution to the growing need for electricity.

European Energy increases the capacity of its Måde Power-to-X site to 8.1 MW, with a new electrolyser in service and ongoing tests for commercial production in 2026.
Lhyfe aims to double its revenue next year, refocuses industrial priorities and plans a 30% cost reduction starting in 2026 to accelerate profitability.
Plug Power has completed the installation of a 5 MW PEM electrolyzer for Cleanergy Solutions Namibia, marking the launch of Africa’s first fully integrated green hydrogen production and distribution site.
Indian group AM Green has signed a memorandum of understanding with Japanese conglomerate Mitsui to co-finance a one million tonne per year integrated low-carbon aluminium production platform.
Next Hydrogen completes a $20.7mn private placement led by Smoothwater Capital, boosting its ability to commercialise alkaline electrolysers at scale and altering the company’s control structure.
Gasunie and Thyssengas have signed an agreement to convert existing gas pipelines into hydrogen conduits between the Netherlands and Germany, facilitating integration of Dutch ports with German industrial regions.
The conditional power supply agreement for the Holmaneset project is extended to 2029, covering a ten-year electricity delivery period, as Fortescue continues feasibility studies.
HDF Energy partners with ABB to design a multi-megawatt hydrogen fuel cell system for vessel propulsion and auxiliary power, strengthening their position in the global maritime market.
SONATRACH continues its integration strategy into the green hydrogen market, with the support of European partners, through the Algeria to Europe Hydrogen Alliance (ALTEH2A) and the SoutH2 Corridor, aimed at supplying Europe with clean energy.
Operator GASCADE has converted 400 kilometres of gas pipelines into a strategic hydrogen corridor between the Baltic Sea and Saxony-Anhalt, now operational.
Lummus Technology and Advanced Ionics have started construction of a pilot unit in Pasadena to test a new high-efficiency electrolysis technology, marking a step toward large-scale green hydrogen production.
Nel ASA launches the industrial phase of its pressurised alkaline technology, with an initial 1 GW production capacity and EU support of up to EUR135mn ($146mn).
Peregrine Hydrogen and Tasmania Energy Metals have signed a letter of intent to install an innovative electrolysis technology at the future nickel processing site in Bell Bay, Tasmania.
Elemental Clean Fuels will develop a 10-megawatt green hydrogen production facility in Kamloops, in partnership with Sc.wén̓wen Economic Development and Kruger Kamloops Pulp L.P., to replace part of the natural gas used at the industrial site.
Driven by green hydrogen demand and state-backed industrial plans, the global electrolyser market could reach $42.4bn by 2034, according to the latest forecast by Future Market Insights.
Driven by mobility and alkaline electrolysis, the global green hydrogen market is projected to grow at a rate of 60 % annually, reaching $74.81bn in 2032 from $2.79bn in 2025.
Plug Power will supply a 5MW PEM electrolyser to Hy2gen’s Sunrhyse project in Signes, marking a key step in expanding RFNBO-certified hydrogen in southern France.
The cross-border hydrogen transport network HY4Link receives recognition from the European Commission as a project of common interest, unlocking access to funding and integration into Europe’s energy infrastructure.
The withdrawal of Stellantis weakens Symbio, which is forced to drastically reduce its workforce at the Saint-Fons plant, despite significant industrial investment backed by both public and private stakeholders.
German steelmaker Thyssenkrupp plans to cut 11,000 jobs and reduce capacity by 25% as a condition to enable the sale of its steel division to India’s Jindal Steel.

All the latest energy news, all the time

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.