The Evolution of Nuclear Propulsion in Space Exploration

A Silent Revolution: Nuclear Propulsion in the Era of Space Exploration.

Share:

Propulsion fusée

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

The Evolution of Nuclear Propulsion has radically transformed the way we think about space exploration. Spectacular advances have been made over the decades, but one of the most striking and discreet developments has been the integration of nuclear propulsion into our quest to understand the universe around us.

The Challenge of Interstellar Exploration

The race to conquer space has always been driven by a desire to push back the limits of science and technology. However, there are fundamental challenges to overcome in order to reach the farthest reaches of interstellar space.

The development of space nuclear propulsion has been underway for decades, but is now entering a phase where it is moving from theory to reality. NASA recently awarded a $5 million contract to Ultra Safe Nuclear Corporation (USNC) to manufacture and test advanced nuclear fuel. This marks an important transition, as nuclear propulsion moves from the design phase to the concrete development phase.

Public-Private Partnership for Space Exploration

USNC is working with Blue Origin to develop a nuclear thermal propulsion engine optimized for cislunar scientific and civil space missions, i.e. between the Earth and the Moon. This is an example of a public-private partnership designed to push back the frontiers of space exploration.

But why is nuclear propulsion so crucial to the future of space exploration? The answer lies in its ability to propel spacecraft faster and over longer distances.

The Horizons of Space Exploration

Exploring distant planets, collecting samples from asteroids, even visiting other stars are becoming attainable goals. Nuclear propulsion expands our vision of what we can achieve in space, paving the way for new scientific discoveries and a deeper understanding of the universe.

However, the integration of nuclear propulsion into space exploration is not without its challenges. Nuclear safety and waste management issues need to be carefully addressed. It is essential to ensure that these technologies are used responsibly and in line with international standards.

An exciting future

Ultimately, nuclear propulsion is transforming space exploration into an exciting reality. The future looks bright, with interstellar travel and interplanetary missions becoming increasingly accessible. The silent revolution of nuclear propulsion is bringing us a little closer to the stars, while helping us to understand our place in the universe. It’s an exciting era for space exploration, and nuclear power plays a central role in this adventure into the unknown.

Bishkek plans to host a RITM-200N small modular reactor supplied by Rosatom to address electricity shortages and deepen energy ties with Moscow, despite the risks posed by Western sanctions.
The Niigata prefectural assembly will vote on the restart of Unit 6, potentially marking TEPCO’s first reactor relaunch since the 2011 Fukushima disaster.
The Norwegian government has initiated a consultation with neighbouring countries on its modular nuclear power plant project in Aure and Heim, in accordance with the Espoo Convention.
Türkiye and South Korea have signed a memorandum of understanding to jointly explore nuclear power plant projects, marking a strategic step in the long-term development of Türkiye's energy infrastructure.
Asian Development Bank has amended its energy policy to enable funding for civil nuclear projects in developing member countries across the Asia-Pacific region.
First Hydrogen begins research with the University of Alberta to identify molten-salt mixtures simulating nuclear fuels for SMR prototypes.
Framatome has completed the manufacturing of the first nuclear fuel assemblies for the Barakah power plant, marking a key milestone in the supply agreement signed with Emirates Nuclear Energy Company in July.
A government-commissioned report proposes 47 measures to simplify nuclear regulation, reduce decommissioning costs and accelerate delivery of civilian and military projects.
The Hualong One reactor at Zhangzhou nuclear power plant has been connected to the grid, marking a major milestone in the expansion of China’s civilian nuclear programme.
Russian state nuclear group Rosatom has validated the additive manufacturing of parts for its small modular reactors, marking an industrial first for RITM-200 SMR plant equipment.
California-based Maritime Fusion, backed by Y Combinator and Trucks VC, is betting on a decentralised approach to fusion to target maritime and off-grid applications.
Bayridge Resources secures a majority stake in an advanced uranium project in Canada, strengthening its strategic presence in a geologically promising region.
A significant volume of concrete from the dismantling of the Sizewell A nuclear power plant is being transferred to support the foundations of the Sizewell C project, under a partnership between UK nuclear sector stakeholders.
The Janus programme will deploy micro nuclear power plants across nine military bases to reinforce energy autonomy for critical U.S. Army installations.
The Idaho National Laboratory has started irradiation testing on uranium-zirconium fuel samples from Lightbridge in its experimental reactor, marking a key step toward the industrial validation of advanced nuclear fuel.
NexGen Energy has opened Canadian Nuclear Safety Commission hearings for the final approval of its Rook I uranium project, following more than six years of regulatory process.
Oklo has signed a binding agreement with Siemens Energy to accelerate manufacturing of the energy conversion system for its first advanced nuclear power plant in the United States.
A security document handling incident at the nuclear power plant renews concerns about TEPCO as a key decision on restarting reactors 6 and 7 approaches in Niigata.
An initial civil nuclear cooperation agreement was signed between the United States and Saudi Arabia, prompting calls from the US Congress for strict safeguards to prevent a Middle East arms race.
The launch of the Zhaoyuan nuclear project anchors the Hualong One model inland, illustrating Beijing’s strategy of regulatory normalisation in response to Western technological restrictions.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.