Norway Launches Complete Industrial Chain for Carbon Capture and Storage

Norway has launched a major industrial project aimed at capturing, maritime transport, and geological storage of COâ‚‚, mobilizing key energy players and significant public subsidies to ensure economic viability.

Share:

Subscribe for unlimited access to all the latest energy sector news.

Over 150 multisector articles and analyses every week.

For less than €3/week*

*For an annual commitment

*Engagement annuel à seulement 99 € (au lieu de 149 €), offre valable jusqu'au 30/07/2025 minuit.

The Norwegian government officially inaugurated this week the Longship industrial project, described as the world’s first integrated chain of carbon dioxide (COâ‚‚) capture, transportation, and storage. This initiative, financially supported by the Norwegian state with 22 billion kroner (around €2 billion), is aimed at addressing emissions from industries challenging to decarbonize, such as cement production and waste incineration. Two primary industrial sites are initially involved in the project: the Heidelberg Materials cement plant in Brevik and the Hafslund Celsio waste incineration plant near Oslo. The process involves capturing COâ‚‚ at source, liquefying it, transporting it by ship to the maritime terminal at Øygarden, near Bergen, and then injecting it deep beneath the seabed.

An Integrated Logistics Process

The first operational facility in the Longship project is the Brevik cement plant, owned by the German group Heidelberg Materials, capable of capturing approximately 400,000 tonnes of CO₂ annually. A second site, the Hafslund Celsio waste incineration plant, will begin operations in 2029 with an annual capture capacity of 350,000 tonnes. After capture, emissions are transported by ship to the Øygarden terminal. There, the CO₂ transits through infrastructure built under the Northern Lights project, managed by an energy consortium consisting of Equinor, Shell, and TotalEnergies, responsible for geological injection.

The Northern Lights facilities, operational since last year, currently have an annual storage capacity of 1.5 million tonnes of COâ‚‚. This capacity is expected to gradually increase, reaching 5 million tonnes per year by 2028, enabling the site to accommodate emissions from other European industrial installations in the coming years.

Financing and Economic Model of the Project

The total investment required for the Longship project is estimated at around 34 billion kroner (approximately €3 billion), distributed between installation expenses and operating costs over an initial ten-year period. The substantial financial commitment by the Norwegian government, covering nearly two-thirds of the total cost, highlights the current economic complexity of carbon capture and storage (CCS) without public support.

This governmental backing directly addresses the economic challenge faced by industry: currently, it is generally more advantageous to purchase carbon emission allowances on the European Emissions Trading System (ETS) market than to invest in CCS technologies. Thus, the project’s profitability depends fundamentally on public subsidies and a scaling-up of storage capacities, which could generate economies of scale in the longer term.

Technological and Economic Challenges of CCS

Carbon Capture and Storage (CCS) remains a complex technology, involving industrial processes that are costly in terms of infrastructure. Globally, the total installed capacity for capturing COâ‚‚ currently stands at around 50 million tonnes per year, equivalent to approximately 0.1% of annual global carbon emissions, according to the International Energy Agency (IEA). This illustrates the significant challenges industries face in adopting this technology without subsidies.

The Norwegian model precisely aims to address these challenges through implementing a complete and integrated industrial chain. Maritime transport of liquefied COâ‚‚ over long distances to offshore sites represents a significant expense, though it allows centralization of flows to optimize geological storage management. This storage occurs by injecting COâ‚‚ into a saline aquifer located approximately 110 kilometers offshore from the Norwegian coast, at a depth of 2,600 meters below the seabed.

European Interest and Prospects

The infrastructure established by Norway is also intended for use by other European industrial companies facing stringent regulatory objectives for carbon emission reductions. The planned expansion of Northern Lights to a storage capacity of 5 million tonnes annually could position it as a major European CCS hub, attracting industrial interest from other European countries subject to increasingly stringent regulatory constraints.

Several European companies, particularly from energy-intensive sectors such as cement production, steel, or chemical manufacturing, are already considering using Norway’s new geological storage infrastructure to meet their own climate obligations imposed by the European Union. Norway’s economic model, combining capture at source, maritime logistics, and offshore storage, may thus serve as a benchmark industrial solution within an evolving European regulatory context.

Singapore signs its first regional carbon credit agreement with Thailand, paving the way for new financial flows and stronger cooperation within ASEAN.
Eni sells nearly half of Eni CCUS Holding to GIP, consolidating a structure dedicated to carbon capture and storage projects across Europe.
Investors hold 28.9 million EUAs net long as of August 8, four-month record level. Prices stable around 71 euros despite divergent fundamentals.
The federal government is funding an Ottawa-based company’s project to design a CO2 capture unit adapted to cold climates and integrated into a shipping container.
Fluenta has completed the installation of its Bias-90 FlarePhase system at the Pelican Amine Treating Plant in Louisiana, marking progress in the measurement of flare gas flows with very high carbon dioxide concentrations.
Alberta carbon credits trade at 74% below federal price as inventory reaches three years of surplus, raising questions about regulatory equivalence before 2026 review.
The integration of carbon capture credits into the British trading system by 2029 raises questions about the price gap with allowances and limited supply capacity.
Carbon Ridge reaches a major milestone by deploying the first centrifugal carbon capture technology on a Scorpio Tankers oil tanker, alongside a new funding round exceeding $20mn.
Elimini and HOFOR join forces to transform the AMV4 unit at Amagerværket with a BECCS project, aiming for large-scale CO₂ capture and the creation of certified carbon credits. —
Carbonova receives $3.20mn from the Advanced Materials Challenge programme to launch the first commercial demonstration unit for carbon nanofibers in Calgary, accelerating industrial development in advanced materials.
Chestnut Carbon has secured a non-recourse loan of $210mn led by J.P. Morgan, marking a significant step for afforestation project financing and the growth of the U.S. voluntary carbon market.
TotalEnergies seals partnership with NativState to develop thirteen forestry management projects across 100,000 hectares, providing an economic alternative to intensive timber harvesting for hundreds of private landowners.
Drax’s generation site recorded a 16% rise in its emissions, consolidating its position as the UK’s main emitter, according to analysis published by think tank Ember.
Graphano Energy announces an initial mineral resource estimate for its Lac Saguay graphite properties in Québec, highlighting immediate development potential near major transport routes, supported by independent analyses.
Carbon2Nature, a subsidiary of Iberdrola, partners with law firm Uría Menéndez on a 90-hectare reforestation project in Sierra de Francia, targeting carbon footprint compensation for the legal sector.
North Sea Farmers has carried out the very first commercial-scale seaweed harvest in an offshore wind farm, supported by funding from the Amazon Right Now climate fund.
The UK's National Wealth Fund participates in a GBP 59.6 million funding round to finance a COâ‚‚ capture pipeline for the cement and lime industry, targeting a final investment decision by 2028.
The Bayou Bend project, led by Chevron, Equinor, and TotalEnergies, aims to become a major hub for industrial carbon dioxide storage on the US Gulf Coast, with initial phases already completed.
US-based Chloris Geospatial has raised $8.5M from international investors to expand its satellite-based forest monitoring capabilities and strengthen its commercial position in Europe, addressing growing demand in the carbon market.
The federal government is funding three carbon capture, utilisation and storage initiatives in Alberta, strengthening national energy competitiveness and preparing infrastructure aligned with long-term emission-reduction goals.
Consent Preferences