Integration of renewable energies in China and India: Storage and grid issues

India and China are accelerating the deployment of their solar and wind power capacities. However, optimizing storage infrastructures and networks remains a major challenge to avoid energy losses.

Share:

Subscribe for unlimited access to all the latest energy sector news.

Over 150 multisector articles and analyses every week.

For less than €3/week*

*For an annual commitment

*Engagement annuel à seulement 99 € (au lieu de 149 €), offre valable jusqu'au 30/07/2025 minuit.

China, the world leader in renewable capacity, is investing heavily in its electricity infrastructure to meet these needs.
Analysts report a 23% increase in investment in transmission networks between January and August 2024.
These investments are essential to avoid curtailment problems, i.e. production limitations that occur when the grid cannot absorb all the energy generated.
To deal with this situation, China is also developing storage capacities with solutions such as pumped hydroelectric storage, as well as advanced battery systems.
India, meanwhile, is finding it difficult to maintain the pace of its renewable capacity additions.
Although the country is making progress, transmission infrastructure is not always keeping pace.
What’s more, energy demand in India is growing at a steady 6% a year, putting further pressure on its networks.
The development of storage systems is also a key challenge to support this expansion.
India plans to develop 56 GW of storage capacity, divided between batteries (42 GW) and pumped hydro (14 GW), by 2030.

The role of storage in the energy transition

Energy storage plays a crucial role in the integration of renewable energies.
The ability to store surplus energy generated by wind and solar power, and redistribute it at times of low production, helps stabilize power grids.
In China, in addition to conventional storage solutions, the authorities are exploring innovative technologies such as flywheels and compressed air systems.
The aim is to ensure that electricity generated by renewable sources is not wasted, and that the grid can absorb these volumes smoothly.
In India, storage capacity is still in the development phase, but significant progress is being made.
The country has already launched several tenders for the construction of new storage facilities, totalling 13 GW, and plans to triple its battery storage capacity by 2030.
Nevertheless, analysts point out that India will need to increase its investment in transmission infrastructure to ensure that new renewable generation capacity can be properly integrated into the grid.

Outlook for the integration of renewable energies

The successful integration of renewable energies depends to a large extent on the adoption of favorable public policies and the implementation of support mechanisms.
The Chinese and Indian governments are taking steps to encourage investment in transmission and storage infrastructure.
In China, the use of dynamic tariffs for renewable energy, and the introduction of new market mechanisms, aim to maximize the use of clean energy sources and reduce dependence on fossil fuels.
In India, the government supports storage projects through tax incentives and subsidies, while working on structural reforms to improve the efficiency of the electricity market.
The challenges are many, particularly in terms of supply chain management and financing new projects.
However, the country’s commitment to triple its solar and wind power capacity by 2030 demonstrates its determination to play a key role in the global energy transition.
In conclusion, China’s and India’s success in integrating renewable energies will depend on their ability to strengthen and modernize their power grids.
Energy storage is becoming a central element of this strategy, helping to ensure grid stability while avoiding losses linked to production variations.
Both countries continue to make rapid progress in this direction, with increasing investment and innovative technological solutions.

Tesla retains the top position in the global battery storage market, but Sungrow moves within one point, revealing intensifying rivalries and a rapid reshaping of regional dynamics in 2024.
Lyten announces an agreement to acquire most of Northvolt's assets in Sweden and Germany, bringing new industrial prospects to the energy storage sector in Europe.
Energy Vault secures an exclusive $300 mn commitment to support the creation of Asset Vault, a subsidiary dedicated to building and operating 1.5 GW of energy storage projects across several continents.
Energy Vault confirms the acquisition of the Stoney Creek storage project, marking its first major operation in the Australian market, following approval from local authorities on foreign investments.
GoldenPeaks Capital strengthens its position on the Polish energy storage market with the acquisition of two battery systems, totalling 54 MW, secured by seventeen-year capacity contracts.
SolarMax Technology has signed a key contract to deliver a 430 MWh battery energy storage system in Texas, strengthening its presence in the large-scale US energy solutions market.
Shanghai Sermatec Energy Technology Co., Ltd. announces an agreement to supply more than 430 MWh of energy storage in Bulgaria, marking a new step in the expansion of Chinese solutions in the European market.
Pulse Clean Energy raises GBP220mn ($292.3mn) from six international banks to fund six new battery sites, supporting the UK strategy to expand energy storage and transition to a more resilient network.
According to Ember, the profitability of battery storage on Indian wholesale markets is rising sharply, driven by the rapid decline in costs and high volatility in electricity prices.
Pacific Green has signed a commitment agreement with ZEN Energy for the management of 1.5GWh of battery storage across three major sites in Australia, strengthening its portfolio and accelerating the market launch of its projects.
More than 100,000 residential batteries coordinated by Sunrun delivered 360 megawatts to the California electricity grid, setting a new record for distributed power during an exercise supervised by local authorities.
Princeton NuEnergy receives a SuperBoost grant to industrialise its direct lithium-ion battery recycling process, strengthening the resilience of the U.S. supply chain and national security objectives.
EnBW plans to install in Philippsburg one of Germany’s most powerful battery storage systems, with a capacity of 800 MWh, supporting the transition of the former nuclear site into a key player in grid flexibility.
Eos Energy Enterprises reaches a milestone with record quarterly revenue and strengthens its position in energy storage, supported by a major fundraising and the expansion of its commercial pipeline.
AGL Energy Limited invests 800 mn USD in a 500 MW battery in New South Wales, aiming for commissioning in 2027 and strengthening its position in the flexible assets market.
AGL launches a community battery project totalling 11.5 MW, aiming to reduce electricity costs for more than 10,000 low-income households in South Australia through a public-private partnership and public financial support.
Nearly 1 GWh of storage capacity has just been added to the Texas grid by esVolta, meeting critical needs in Dallas and western parts of the state for the 2025 summer peak.
Arevon has launched operations at the Peregrine Energy Storage project in San Diego, with a capacity of 200 MW for 400 MWh and a $300mn investment to strengthen California’s energy security during periods of peak demand.
H2G Green Limited and Singapore’s Agency for Science, Technology and Research launch a partnership to industrialise a process transforming biochar into hard carbon, essential for sodium-ion and lithium-ion battery production. —
Avangrid has completed a strategic pilot with Tyba to optimise battery site selection, simulating operations at over 2,400 locations to refine profitability and the management of energy storage on US power markets.
Consent Preferences