The Future of Energy Flexibility: The Growing Role of Power-to-Hydrogen-to-Power (PtP) Technology

In the face of renewable energy intermittency, Power-to-Hydrogen-to-Power (PtP) technology could revolutionize energy storage. However, its adoption still depends on cost reduction and efficiency improvements.

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

The global energy sector faces a major challenge: integrating intermittent renewable energies while ensuring grid stability. Wind and solar, although crucial for the energy transition, are not constant and can lead to periods of overproduction or shortages. In this context, Power-to-Hydrogen-to-Power (PtP) technology emerges as a promising solution for storing excess electricity in the form of hydrogen, then converting it back into energy. However, several economic and technical challenges must be overcome to make this technology viable at scale.

The Principle of Power-to-Hydrogen-to-Power (PtP) Technology

The PtP concept is based on two main steps: electrolysis of water to produce hydrogen from excess electricity, and conversion of this hydrogen into electricity via a fuel cell or gas turbine. Electrolysis uses excess electricity to split water into oxygen and hydrogen. This hydrogen can then be stored as a gas in high-pressure tanks or as a liquid at very low temperatures. The stored hydrogen can be used in a fuel cell to produce electricity when needed, or in a gas turbine as an alternative to conventional thermal power plants.

Efficiency of PtP Technology

The efficiency of PtP technology varies depending on the components used. The electrolyzer, which splits water into oxygen and hydrogen, has an efficiency ranging from 60% to 79% depending on the technology used. Proton Exchange Membrane (PEM) electrolyzers are typically more expensive but offer higher efficiencies, while alkaline electrolyzers, although cheaper, have lower efficiencies ranging from 48% to 70%. Therefore, this first conversion step is relatively efficient, but still inferior to other storage technologies, such as lithium-ion batteries.

The conversion of hydrogen into electricity via fuel cells or gas turbines suffers an additional loss in efficiency. Fuel cell efficiencies range from 45% to 60%, while gas turbines offer efficiencies of around 35% to 48%. Consequently, the entire Power-to-Hydrogen-to-Power process can have an overall efficiency ranging from 27% to 33%, making it less competitive compared to other short-term energy storage forms, such as lithium-ion batteries or pumped hydro storage.

The Benefits of PtP for Managing Energy Production Fluctuations

One of the main advantages of PtP technology is its ability to store electricity over the long term. Unlike lithium-ion batteries, which are more suited for short-term energy storage (a few hours to a few days), hydrogen can be stored for much longer periods, ranging from several weeks to several months. This long-duration storage could help address periods of low renewable energy production, such as windless days or cloudy periods that limit the effectiveness of solar panels.

In Germany, for example, wind energy production can drop significantly during the winter, particularly during the “dunkelflaute” season, where weather conditions make wind energy almost useless. During this period, hydrogen storage could provide a stable energy source to power the grid. According to a study by the International Renewable Energy Agency (IRENA), Germany could integrate up to 7% of its annual energy consumption into PtP systems by 2030, thus contributing to grid resilience.

The Geopolitical and Economic Implications of Hydrogen Storage

The increase in hydrogen production and the storage of energy as hydrogen also brings geopolitical advantages. Hydrogen can be produced locally, reducing reliance on fossil fuel imports. This is a major strategic issue for countries seeking to diversify their energy sources, reduce their carbon footprint, and ensure energy independence. China, for example, plans to invest heavily in hydrogen production infrastructure to support its energy transition and secure its long-term energy supply.

However, the production costs of hydrogen via electrolysis are still high. The cost of producing one kilowatt-hour (kWh) of energy from PtP ranges from $0.35 to $0.55 per kWh, depending on the technology used and the location of production. This cost is still higher than that of energy production from natural gas or coal, but it could decrease as technology develops and production scales up. Experts estimate that as investments increase and production standardizes, the cost of electricity from hydrogen could decrease by 30% to 50% by 2030.

The Economic Viability of PtP Technology

The cost of PtP systems, which include electrolyzers and gas turbines, is also a barrier to large-scale adoption. Currently, hydrogen storage installations are much more expensive than alternative technologies. For example, the installation cost of a high-capacity electrolyzer is estimated at around $300 per kWh, which is much higher than the production cost of lithium-ion batteries (around $100 to $300 per kWh). In addition, the infrastructure needed to transport and store hydrogen (high-pressure tanks, pipelines) further increases the total system cost.

However, the long-term profitability of PtP could become more competitive if hydrogen storage becomes more widespread. Pilot projects in countries such as Germany, the UK, and the US are showing positive signs. For example, a pilot project in Germany, funded by the EU, has shown that a large-scale PtP solution could reduce costs by 15% to 20% from the third generation of systems, making this technology more economically viable in the long term.

International Projects and the Viability of PtP

In several countries, pilot projects have been launched to test the viability of PtP technology on a large scale. In Belgium, for example, a 10 MW hydrogen production and storage project is expected to be completed by 2025. This project aims to demonstrate the effectiveness of hydrogen as a long-term energy storage solution. In France, several studies show that hydrogen could cover about 10% of electricity needs by 2035, through a combination of PtP systems and other storage technologies.

In Asia, Japan and South Korea are investing in hydrogen production infrastructure to diversify their energy sources. China has launched an ambitious “hydrogen gas network” project, aiming to connect several regions to distribute low-cost hydrogen and increase the share of hydrogen in the country’s energy mix.

In Inner Mongolia, Xing’an League is deploying CNY6bn in public funds to build an integrated industrial ecosystem for hydrogen, ammonia and methanol production using local renewable resources.
Despite a drop in sales, thyssenkrupp nucera ends fiscal year 2024/2025 with operating profit, supported by stable electrolysis performance and positive cash flow.
ExxonMobil’s pause of the Baytown project highlights critical commercial gaps and reflects the impact of US federal cuts to low-carbon technologies.
State-owned Chinese group Datang commissions a project combining renewable energy and green hydrogen within a coal-to-chemicals complex in Inner Mongolia, aiming to reduce stranded asset risks while securing future industrial investments.
Möhring Energie Group commits to a green hydrogen and ammonia production project in Mauritania, targeting European markets from 2029, with an initial capacity of 1 GW.
Air Liquide deploys two hydrogen-powered heavy-duty trucks for its logistics operations in the Rotterdam area, marking a step in the integration of low-emission solutions in freight transport.
French hydrogen producer Lhyfe will deliver over 200 tonnes of RFNBO-certified hydrogen to a heavy mobility operator under a multi-year contract effective since 1 November 2025.
Plug Power was selected by Carlton Power to equip three UK-based projects totalling 55 MW, under an agreement subject to a final investment decision expected by early 2026.
Hyroad Energy expands its services to include maintenance, software, and spare parts, offering a comprehensive solution for hydrogen freight operators in the United States.
Air Liquide has launched in Antwerp the first industrial-scale pilot unit for converting ammonia into hydrogen, marking a key technological milestone in the global low-carbon hydrogen supply chain.
Ohmium reached an iridium utilisation rate of 18 GW/ton for its electrolyzers, significantly surpassing the 2030 target, through technological advances that lower hydrogen production costs.
The European Commission opens its first call for hydrogen suppliers with a new matchmaking platform aimed at facilitating investment decisions in the sector.
Ballard Power Systems reports a significant increase in revenue and reduced losses, supported by deep restructuring and positive developments in its main commercial segments.
The inclusion of hydrogen in China’s 15th Five-Year Plan confirms a public investment strategy focused on cost reduction, domestic demand stimulation and geo-economic influence across global markets.
EDF power solutions has inaugurated a hydrogen pilot plant at the Norte Fluminense thermal power plant, with an investment of BRL4.5mn ($882,000), as part of Aneel's R&D programme.
Plug Power plans to generate $275mn by divesting assets and reallocating investments to the data center market, as part of a strategy focused on returns and financial discipline.
GreenH launches construction of three green hydrogen projects in Bodø, Kristiansund and Slagentangen, backed by NOK391mn ($35.86mn) in public funding, aiming to strengthen decarbonised maritime supply along Norway’s coast.
Nel ASA becomes technology provider for the Enova-supported hydrogen sites in Kristiansund and Slagentangen, with a combined minimum capacity of 20 MW.
French hydrogen producer Lhyfe has signed an agreement to supply 90 tonnes of RFNBO-certified hydrogen to a private fuel station operator in Germany for a fleet of buses.
Loblaw and FortisBC are trialling a hydrogen-powered heavy truck between Vancouver and Squamish, marking a step in the integration of low-emission solutions in Canada’s grocery logistics.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.