Hydrogen Leaks: A Critical Challenge Highlighted by the OIES Report

Hydrogen Leaks: A Critical Challenge Highlighted by the OIES Report

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

In the race toward carbon neutrality, hydrogen is often seen as a miracle solution, capable of decarbonizing the most challenging sectors such as heavy industry or maritime transport. However, a recent report by the Oxford Institute for Energy Studies (OIES) points out an underestimated problem: hydrogen leaks.

Although these losses may seem minimal, their environmental and economic impact is far from negligible. The study, entitled Review of Hydrogen Leakage along the Supply Chain, provides a detailed analysis of the risks related to leaks, their causes, and ways to reduce them. This article deciphers the report’s findings while shedding light on the challenges it raises for the future of the energy transition.

An Invisible but Devastating Risk

Hydrogen is often described as “clean energy” because its combustion produces only water. However, when it escapes into the atmosphere, it can cause significant indirect climatic effects. The OIES report explains these mechanisms in detail.

– Slowing the breakdown of methane: Hydrogen competes with methane for hydroxyl radicals (OH), which play a key role in breaking down this powerful greenhouse gas. This interaction prolongs methane’s atmospheric lifespan, amplifying its climatic impact.

– Increasing tropospheric ozone: By reacting with nitrogen oxides (NOₓ), hydrogen contributes to the formation of tropospheric ozone. This gas, toxic to humans and harmful to crops, is a major pollutant in urban areas.

– Effects on the stratosphere: When hydrogen reaches the upper layers of the atmosphere, it can increase water vapor concentration, which worsens ozone layer destruction. This exposes the Earth’s surface to harmful UV rays.

These indirect effects, while less visible than CO₂ emissions, could hinder global climate goals if hydrogen leaks are not controlled.

A Supply Chain with Multiple Risks

The report identifies the main vulnerabilities in the hydrogen supply chain where leaks are most frequent.

1. Production:
– Leaks are relatively limited in modern facilities like electrolyzers, but they can occur during complex processes such as carbon capture and storage in methane reforming plants (blue hydrogen).
– Aging equipment and inadequate maintenance procedures increase risks.

2. Transport and storage:
– Pipelines: Hydrogen embrittlement of materials is a major issue. This phenomenon weakens steel pipelines, making them more likely to leak. Micro-leaks, although often imperceptible, accumulate over long distances.
– Cryogenic tanks: Storing liquid hydrogen at -253°C leads to losses through “boil-off” (evaporation), particularly when tanks are poorly insulated.

3. End-use:
– Hydrogen refueling stations and vehicles handle gases under high pressure, increasing the risk of leaks.
– In industrial applications, high-pressure or high-temperature equipment requires constant maintenance to prevent losses.

The report estimates that the transport and storage segment alone accounts for about 50% of hydrogen leaks in the supply chain.

The Economic Consequences of Leaks

Hydrogen leaks not only pose an environmental problem, but they also result in significant financial losses. With production costs ranging between $2 and $4 per kilogram, every leak represents substantial waste.

According to the report, if current infrastructures are not adapted, up to 6.9% of the hydrogen produced could be lost into the atmosphere. Economically, this could translate to annual global losses of several billion dollars.

Beyond direct losses, leaks also increase the maintenance costs of infrastructure, as materials damaged by hydrogen require frequent repairs. These additional costs could deter investors and slow the development of the hydrogen sector.

Solutions Proposed in the Report

To reduce hydrogen leaks, the OIES report proposes a combined approach of technological innovations and ambitious public policies.

1. Technological innovations:
– Advanced materials: The use of nanocoatings like graphene or pipelines lined with polymers helps limit embrittlement and permeation.
– Advanced detection: Optical and electrochemical sensors can detect leaks at very low levels, ensuring quick intervention.

2. Infrastructure design:
– Reducing the number of connections in pipelines minimizes leak risks.
– Modular systems simplify maintenance and reduce vulnerable areas.

3. Public policies:
– Establishing international standards, such as those proposed by ISO and ASME, is essential for uniform practices.
– Financial incentives, such as subsidies for modernizing infrastructure, would encourage the adoption of advanced technologies.

To learn more and download the full report, click here: ET41 – Review of Hydrogen Leakage along the Supply Chain

An Urgent Global Challenge

The report concludes with an uncompromising observation: controlling hydrogen leaks must become a strategic priority to ensure the success of the energy transition. Without rapid and coordinated action, the climate benefits of hydrogen could be partially negated.

The path forward is clear: invest in adapted infrastructure, strengthen regulatory frameworks, and promote technological innovations. Hydrogen can fulfill its promise as a clean and sustainable energy source, but only if the issue of leaks is addressed today.

Möhring Energie Group commits to a green hydrogen and ammonia production project in Mauritania, targeting European markets from 2029, with an initial capacity of 1 GW.
Air Liquide deploys two hydrogen-powered heavy-duty trucks for its logistics operations in the Rotterdam area, marking a step in the integration of low-emission solutions in freight transport.
French hydrogen producer Lhyfe will deliver over 200 tonnes of RFNBO-certified hydrogen to a heavy mobility operator under a multi-year contract effective since 1 November 2025.
Plug Power was selected by Carlton Power to equip three UK-based projects totalling 55 MW, under an agreement subject to a final investment decision expected by early 2026.
Hyroad Energy expands its services to include maintenance, software, and spare parts, offering a comprehensive solution for hydrogen freight operators in the United States.
Air Liquide has launched in Antwerp the first industrial-scale pilot unit for converting ammonia into hydrogen, marking a key technological milestone in the global low-carbon hydrogen supply chain.
Ohmium reached an iridium utilisation rate of 18 GW/ton for its electrolyzers, significantly surpassing the 2030 target, through technological advances that lower hydrogen production costs.
The European Commission opens its first call for hydrogen suppliers with a new matchmaking platform aimed at facilitating investment decisions in the sector.
Ballard Power Systems reports a significant increase in revenue and reduced losses, supported by deep restructuring and positive developments in its main commercial segments.
The inclusion of hydrogen in China’s 15th Five-Year Plan confirms a public investment strategy focused on cost reduction, domestic demand stimulation and geo-economic influence across global markets.
EDF power solutions has inaugurated a hydrogen pilot plant at the Norte Fluminense thermal power plant, with an investment of BRL4.5mn ($882,000), as part of Aneel's R&D programme.
Plug Power plans to generate $275mn by divesting assets and reallocating investments to the data center market, as part of a strategy focused on returns and financial discipline.
GreenH launches construction of three green hydrogen projects in Bodø, Kristiansund and Slagentangen, backed by NOK391mn ($35.86mn) in public funding, aiming to strengthen decarbonised maritime supply along Norway’s coast.
Nel ASA becomes technology provider for the Enova-supported hydrogen sites in Kristiansund and Slagentangen, with a combined minimum capacity of 20 MW.
French hydrogen producer Lhyfe has signed an agreement to supply 90 tonnes of RFNBO-certified hydrogen to a private fuel station operator in Germany for a fleet of buses.
Loblaw and FortisBC are trialling a hydrogen-powered heavy truck between Vancouver and Squamish, marking a step in the integration of low-emission solutions in Canada’s grocery logistics.
Next Hydrogen announces a private equity placement of CAD$20mn to CAD$30mn ($14.55mn to $21.83mn), led by Smoothwater Capital, to accelerate the commercialisation of its electrolyzers and support its industrial growth.
Transition Industries signed a long-term purchase agreement with Mitsubishi Gas Chemical for the annual supply of 1mn tonnes of ultra-low carbon methanol starting in 2029, from its Pacifico Mexinol project in Mexico.
Norwegian group Nel ASA has received a firm order worth over $50mn to supply its PEM electrolysers for two green hydrogen production units in Florø and Eigersund.
Driven by aerospace, industrial gas, and hydrogen investment, the global liquid hydrogen micro-storage systems market is projected to grow 9% annually through 2034.

All the latest energy news, all the time

Annual subscription

8.25$/month*

*billed annually at 99$/year for the first year then 149,00$/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2$/month*
then 14.90$ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.