Hydrogen Leaks: A Critical Challenge Highlighted by the OIES Report

Hydrogen Leaks: A Critical Challenge Highlighted by the OIES Report

Share:

Gain full professional access to energynews.pro from 4.90$/month.
Designed for decision-makers, with no long-term commitment.

Over 30,000 articles published since 2021.
150 new market analyses every week to decode global energy trends.

Monthly Digital PRO PASS

Immediate Access
4.90$/month*

No commitment – cancel anytime, activation in 2 minutes.

*Special launch offer: 1st month at the indicated price, then 14.90 $/month, no long-term commitment.

Annual Digital PRO Pass

Full Annual Access
99$/year*

To access all of energynews.pro without any limits

*Introductory annual price for year one, automatically renewed at 149.00 $/year from the second year.

In the race toward carbon neutrality, hydrogen is often seen as a miracle solution, capable of decarbonizing the most challenging sectors such as heavy industry or maritime transport. However, a recent report by the Oxford Institute for Energy Studies (OIES) points out an underestimated problem: hydrogen leaks.

Although these losses may seem minimal, their environmental and economic impact is far from negligible. The study, entitled Review of Hydrogen Leakage along the Supply Chain, provides a detailed analysis of the risks related to leaks, their causes, and ways to reduce them. This article deciphers the report’s findings while shedding light on the challenges it raises for the future of the energy transition.

An Invisible but Devastating Risk

Hydrogen is often described as “clean energy” because its combustion produces only water. However, when it escapes into the atmosphere, it can cause significant indirect climatic effects. The OIES report explains these mechanisms in detail.

– Slowing the breakdown of methane: Hydrogen competes with methane for hydroxyl radicals (OH), which play a key role in breaking down this powerful greenhouse gas. This interaction prolongs methane’s atmospheric lifespan, amplifying its climatic impact.

– Increasing tropospheric ozone: By reacting with nitrogen oxides (NOₓ), hydrogen contributes to the formation of tropospheric ozone. This gas, toxic to humans and harmful to crops, is a major pollutant in urban areas.

– Effects on the stratosphere: When hydrogen reaches the upper layers of the atmosphere, it can increase water vapor concentration, which worsens ozone layer destruction. This exposes the Earth’s surface to harmful UV rays.

These indirect effects, while less visible than CO₂ emissions, could hinder global climate goals if hydrogen leaks are not controlled.

A Supply Chain with Multiple Risks

The report identifies the main vulnerabilities in the hydrogen supply chain where leaks are most frequent.

1. Production:
– Leaks are relatively limited in modern facilities like electrolyzers, but they can occur during complex processes such as carbon capture and storage in methane reforming plants (blue hydrogen).
– Aging equipment and inadequate maintenance procedures increase risks.

2. Transport and storage:
– Pipelines: Hydrogen embrittlement of materials is a major issue. This phenomenon weakens steel pipelines, making them more likely to leak. Micro-leaks, although often imperceptible, accumulate over long distances.
– Cryogenic tanks: Storing liquid hydrogen at -253°C leads to losses through “boil-off” (evaporation), particularly when tanks are poorly insulated.

3. End-use:
– Hydrogen refueling stations and vehicles handle gases under high pressure, increasing the risk of leaks.
– In industrial applications, high-pressure or high-temperature equipment requires constant maintenance to prevent losses.

The report estimates that the transport and storage segment alone accounts for about 50% of hydrogen leaks in the supply chain.

The Economic Consequences of Leaks

Hydrogen leaks not only pose an environmental problem, but they also result in significant financial losses. With production costs ranging between $2 and $4 per kilogram, every leak represents substantial waste.

According to the report, if current infrastructures are not adapted, up to 6.9% of the hydrogen produced could be lost into the atmosphere. Economically, this could translate to annual global losses of several billion dollars.

Beyond direct losses, leaks also increase the maintenance costs of infrastructure, as materials damaged by hydrogen require frequent repairs. These additional costs could deter investors and slow the development of the hydrogen sector.

Solutions Proposed in the Report

To reduce hydrogen leaks, the OIES report proposes a combined approach of technological innovations and ambitious public policies.

1. Technological innovations:
– Advanced materials: The use of nanocoatings like graphene or pipelines lined with polymers helps limit embrittlement and permeation.
– Advanced detection: Optical and electrochemical sensors can detect leaks at very low levels, ensuring quick intervention.

2. Infrastructure design:
– Reducing the number of connections in pipelines minimizes leak risks.
– Modular systems simplify maintenance and reduce vulnerable areas.

3. Public policies:
– Establishing international standards, such as those proposed by ISO and ASME, is essential for uniform practices.
– Financial incentives, such as subsidies for modernizing infrastructure, would encourage the adoption of advanced technologies.

To learn more and download the full report, click here: ET41 – Review of Hydrogen Leakage along the Supply Chain

An Urgent Global Challenge

The report concludes with an uncompromising observation: controlling hydrogen leaks must become a strategic priority to ensure the success of the energy transition. Without rapid and coordinated action, the climate benefits of hydrogen could be partially negated.

The path forward is clear: invest in adapted infrastructure, strengthen regulatory frameworks, and promote technological innovations. Hydrogen can fulfill its promise as a clean and sustainable energy source, but only if the issue of leaks is addressed today.

Viridien takes a strategic stake in Mantle8 to boost natural hydrogen exploration across Europe, the Middle East and Africa by combining geological data and seismic detection technologies.
A partnership between AquaVentus and Hydrogen Scotland aims to connect Scottish offshore wind farms to a cross-border green hydrogen production and export infrastructure in the North Sea.
Electric Hydrogen announces the acquisition of Ambient Fuels and an alliance with Generate Capital to offer up to $400 mn in hydrogen project financing worldwide starting in 2026.
Hynfra PSA strengthens its presence in West Africa with a $1.5bn green ammonia project, backed by the Mauritanian government, with commercial operations expected to start by 2030.
Over 500 hydrogen projects are now under construction or operational worldwide, with total committed investments reaching USD110 billion, representing an increase of USD35 billion in one year.
From 2029, Verso Energy will supply hydrogen produced in Moselle to steel group SHS, supported by a cross-border pipeline and an industrial investment exceeding €100mn.
The success of SGN’s test on a gas pipeline converted to hydrogen confirms Terra Firma Energy’s technological choices, with sites already equipped to accommodate this type of energy investment.
Lhyfe has started supplying Essent with renewable green hydrogen under a multi-year contract, marking a major commercial debut in the Netherlands for the French producer.
The Dutch government grants major funding to RWE to develop an offshore wind-powered electrolysis facility, marking a key step in the OranjeWind project.
ScottishPower pauses its renewable hydrogen projects in the United Kingdom, despite receiving public subsidies, citing a lack of commercial viability under the HAR1 programme.
thyssenkrupp nucera has completed the purchase of key assets from Green Hydrogen Systems, strengthening its position in pressurised alkaline electrolysis for industrial hydrogen production.
GH2 Solar Ltd partners with AHES Ltd to build an electrolyzer plant in Gwalior, targeting 500 MW capacity by 2030 with $19mn government support.
A cooperation agreement, a bilateral carbon-credit mechanism and converging standards lay the ground for India→Japan hydrogen and ammonia flows, with volume targets, price-support schemes and first export projects scaling up.
Hydrogen offtake agreements are multiplying, with Germany and Japan leading, mobilizing producers and industrial buyers in a still nascent but already highly competitive market.
Vema Hydrogen mobilise des experts internationaux pour accélérer la mise sur le marché de son hydrogène minéral, alors que l’entreprise prévoit de forer ses premiers puits pilotes en Amérique du Nord d’ici la fin de l’année.
First Public Hydrogen Authority opens a request for proposals to transport gaseous and liquid hydrogen across California, with a deadline set for September 12.
US-based manufacturer Ohmium unveils a new generation of modular electrolysers integrating all production systems within a reduced footprint, aiming to lower installation and operating costs for green hydrogen.
ABO Energy and Hydropulse join forces to develop decentralised green hydrogen production units in Europe, with Spain and Finland as priority markets.
Next Hydrogen secures two separate loans, including one from its executives, to consolidate liquidity and continue operations while evaluating long-term financial solutions.
Metacon receives EUR 14.9 million from Motor Oil Hellas for the approved delivery of ten electrolysis units, marking the first stage of a strategic industrial project in Greece.

Log in to read this article

You'll also have access to a selection of our best content.