Hydrogen Leaks: A Critical Challenge Highlighted by the OIES Report

Hydrogen Leaks: A Critical Challenge Highlighted by the OIES Report

Share:

Comprehensive energy news coverage, updated nonstop

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access • Archives included • Professional invoice

OTHER ACCESS OPTIONS

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

FREE ACCOUNT

3 articles offered per month

FREE

*Prices are excluding VAT, which may vary depending on your location or professional status

Since 2021: 35,000 articles • 150+ analyses per week

In the race toward carbon neutrality, hydrogen is often seen as a miracle solution, capable of decarbonizing the most challenging sectors such as heavy industry or maritime transport. However, a recent report by the Oxford Institute for Energy Studies (OIES) points out an underestimated problem: hydrogen leaks.

Although these losses may seem minimal, their environmental and economic impact is far from negligible. The study, entitled Review of Hydrogen Leakage along the Supply Chain, provides a detailed analysis of the risks related to leaks, their causes, and ways to reduce them. This article deciphers the report’s findings while shedding light on the challenges it raises for the future of the energy transition.

An Invisible but Devastating Risk

Hydrogen is often described as “clean energy” because its combustion produces only water. However, when it escapes into the atmosphere, it can cause significant indirect climatic effects. The OIES report explains these mechanisms in detail.

– Slowing the breakdown of methane: Hydrogen competes with methane for hydroxyl radicals (OH), which play a key role in breaking down this powerful greenhouse gas. This interaction prolongs methane’s atmospheric lifespan, amplifying its climatic impact.

– Increasing tropospheric ozone: By reacting with nitrogen oxides (NOₓ), hydrogen contributes to the formation of tropospheric ozone. This gas, toxic to humans and harmful to crops, is a major pollutant in urban areas.

– Effects on the stratosphere: When hydrogen reaches the upper layers of the atmosphere, it can increase water vapor concentration, which worsens ozone layer destruction. This exposes the Earth’s surface to harmful UV rays.

These indirect effects, while less visible than CO₂ emissions, could hinder global climate goals if hydrogen leaks are not controlled.

A Supply Chain with Multiple Risks

The report identifies the main vulnerabilities in the hydrogen supply chain where leaks are most frequent.

1. Production:
– Leaks are relatively limited in modern facilities like electrolyzers, but they can occur during complex processes such as carbon capture and storage in methane reforming plants (blue hydrogen).
– Aging equipment and inadequate maintenance procedures increase risks.

2. Transport and storage:
– Pipelines: Hydrogen embrittlement of materials is a major issue. This phenomenon weakens steel pipelines, making them more likely to leak. Micro-leaks, although often imperceptible, accumulate over long distances.
– Cryogenic tanks: Storing liquid hydrogen at -253°C leads to losses through “boil-off” (evaporation), particularly when tanks are poorly insulated.

3. End-use:
– Hydrogen refueling stations and vehicles handle gases under high pressure, increasing the risk of leaks.
– In industrial applications, high-pressure or high-temperature equipment requires constant maintenance to prevent losses.

The report estimates that the transport and storage segment alone accounts for about 50% of hydrogen leaks in the supply chain.

The Economic Consequences of Leaks

Hydrogen leaks not only pose an environmental problem, but they also result in significant financial losses. With production costs ranging between $2 and $4 per kilogram, every leak represents substantial waste.

According to the report, if current infrastructures are not adapted, up to 6.9% of the hydrogen produced could be lost into the atmosphere. Economically, this could translate to annual global losses of several billion dollars.

Beyond direct losses, leaks also increase the maintenance costs of infrastructure, as materials damaged by hydrogen require frequent repairs. These additional costs could deter investors and slow the development of the hydrogen sector.

Solutions Proposed in the Report

To reduce hydrogen leaks, the OIES report proposes a combined approach of technological innovations and ambitious public policies.

1. Technological innovations:
– Advanced materials: The use of nanocoatings like graphene or pipelines lined with polymers helps limit embrittlement and permeation.
– Advanced detection: Optical and electrochemical sensors can detect leaks at very low levels, ensuring quick intervention.

2. Infrastructure design:
– Reducing the number of connections in pipelines minimizes leak risks.
– Modular systems simplify maintenance and reduce vulnerable areas.

3. Public policies:
– Establishing international standards, such as those proposed by ISO and ASME, is essential for uniform practices.
– Financial incentives, such as subsidies for modernizing infrastructure, would encourage the adoption of advanced technologies.

To learn more and download the full report, click here: ET41 – Review of Hydrogen Leakage along the Supply Chain

An Urgent Global Challenge

The report concludes with an uncompromising observation: controlling hydrogen leaks must become a strategic priority to ensure the success of the energy transition. Without rapid and coordinated action, the climate benefits of hydrogen could be partially negated.

The path forward is clear: invest in adapted infrastructure, strengthen regulatory frameworks, and promote technological innovations. Hydrogen can fulfill its promise as a clean and sustainable energy source, but only if the issue of leaks is addressed today.

European Energy increases the capacity of its Måde Power-to-X site to 8.1 MW, with a new electrolyser in service and ongoing tests for commercial production in 2026.
Lhyfe aims to double its revenue next year, refocuses industrial priorities and plans a 30% cost reduction starting in 2026 to accelerate profitability.
Plug Power has completed the installation of a 5 MW PEM electrolyzer for Cleanergy Solutions Namibia, marking the launch of Africa’s first fully integrated green hydrogen production and distribution site.
Indian group AM Green has signed a memorandum of understanding with Japanese conglomerate Mitsui to co-finance a one million tonne per year integrated low-carbon aluminium production platform.
Next Hydrogen completes a $20.7mn private placement led by Smoothwater Capital, boosting its ability to commercialise alkaline electrolysers at scale and altering the company’s control structure.
Primary Hydrogen plans to launch its initial drilling programme at the Wicheeda North site upon receiving its permit in early 2026, while restructuring its internal exploration functions.
Gasunie and Thyssengas have signed an agreement to convert existing gas pipelines into hydrogen conduits between the Netherlands and Germany, facilitating integration of Dutch ports with German industrial regions.
The conditional power supply agreement for the Holmaneset project is extended to 2029, covering a ten-year electricity delivery period, as Fortescue continues feasibility studies.
HDF Energy partners with ABB to design a multi-megawatt hydrogen fuel cell system for vessel propulsion and auxiliary power, strengthening their position in the global maritime market.
SONATRACH continues its integration strategy into the green hydrogen market, with the support of European partners, through the Algeria to Europe Hydrogen Alliance (ALTEH2A) and the SoutH2 Corridor, aimed at supplying Europe with clean energy.
Operator GASCADE has converted 400 kilometres of gas pipelines into a strategic hydrogen corridor between the Baltic Sea and Saxony-Anhalt, now operational.
Lummus Technology and Advanced Ionics have started construction of a pilot unit in Pasadena to test a new high-efficiency electrolysis technology, marking a step toward large-scale green hydrogen production.
Nel ASA launches the industrial phase of its pressurised alkaline technology, with an initial 1 GW production capacity and EU support of up to EUR135mn ($146mn).
Peregrine Hydrogen and Tasmania Energy Metals have signed a letter of intent to install an innovative electrolysis technology at the future nickel processing site in Bell Bay, Tasmania.
Elemental Clean Fuels will develop a 10-megawatt green hydrogen production facility in Kamloops, in partnership with Sc.wén̓wen Economic Development and Kruger Kamloops Pulp L.P., to replace part of the natural gas used at the industrial site.
Driven by green hydrogen demand and state-backed industrial plans, the global electrolyser market could reach $42.4bn by 2034, according to the latest forecast by Future Market Insights.
Driven by mobility and alkaline electrolysis, the global green hydrogen market is projected to grow at a rate of 60 % annually, reaching $74.81bn in 2032 from $2.79bn in 2025.
Plug Power will supply a 5MW PEM electrolyser to Hy2gen’s Sunrhyse project in Signes, marking a key step in expanding RFNBO-certified hydrogen in southern France.
The cross-border hydrogen transport network HY4Link receives recognition from the European Commission as a project of common interest, unlocking access to funding and integration into Europe’s energy infrastructure.
The withdrawal of Stellantis weakens Symbio, which is forced to drastically reduce its workforce at the Saint-Fons plant, despite significant industrial investment backed by both public and private stakeholders.

All the latest energy news, all the time

Annual subscription

8.25€/month*

*billed annually at 99€/year for the first year then 149,00€/year ​

Unlimited access - Archives included - Pro invoice

Monthly subscription

Unlimited access • Archives included

5.2€/month*
then 14.90€ per month thereafter

*Prices shown are exclusive of VAT, which may vary according to your location or professional status.

Since 2021: 30,000 articles - +150 analyses/week.