Fusion Nucléaire: État des Lieux en 2021

La fusion nucléaire a fait l'objet de nombreuses avancées technologiques au cours des dernières décennies. Pour l'Agence internationale de l'énergie atomique (IAEA), ces avancées sont la promesse d'une énergie abondante, sûre mais aussi sans carbone. L'énergie de la transition énergétique ?|La fusion nucléaire a fait l'objet de nombreuses avancées technologiques au cours des dernières décennies. Pour l'Agence internationale de l'énergie atomique (IAEA), ces avancées sont la promesse d'une énergie abondante, sûre mais aussi sans carbone. L'énergie de la transition énergétique ?

Partager:

Les articles d'energynews.pro en intégralité à partir de 4.90$/mois sans engament

30 000 articles déjà publiés depuis 2021.
150 nouvelles analyses chaque semaine pour décrypter les marchés.

Digital PRO access MENSUEL

Accès immédiat — 4.90$/mois*

sans engagement - annulable à tout moment, activation en 2 minutes

*Tarif indiqué HT applicable pendant 1 mois d’abonnement sans engagement, puis révisé à 14.90 $/mois à partir du 2ᵉ mois.

Digital PRO access annuel

Accès immédiat — 99$/an*

Pour accéder à tout energynews.pro sans aucune limite

*Tarif indiqué HT applicable pendant 1 an d’abonnement, puis révisé à 149,00 $/mois à partir de la 2ᵉ année.

La fusion nucléaire a fait l’objet de nombreuses avancées technologiques au cours des dernières décennies. Pour l’Agence internationale de l’énergie atomique (IAEA), ces avancées sont la promesse d’une énergie abondante, sûre mais aussi sans carbone. L’énergie de la transition énergétique ?

 

Quel est le principe de la fusion nucléaire ?

Au cours d’une fusion nucléaire deux ou plusieurs noyaux atomiques légers s’unissent pour former un noyau plus lourd. Ce phénomène se produit naturellement au cœur des étoiles. Notre soleil transforme, par exemple, d’énormes quantités d’hydrogènes en hélium, produisant une grande quantité d’énergie.

Reproduit sur terre, ce processus pourrait dès lors produire une quantité presque illimitée d’électricité avec peu de matière première. Problème : les noyaux atomiques doivent être chauffés à des millions de degrés et être maintenus confinés pour fusionner. Un processus difficile à contrôler aujourd’hui.

 

L’opposé de la fission nucléaire

Ce processus est donc l’opposé de la fission nucléaire, actuellement utilisée dans les centrales nucléaires pour produire de l’électricité. Cela consiste en la projection d’un neutron sur un atome lourd instable comme l’uranium 235 ou le plutonium 239. Ce dernier est alors divisé en deux atomes plus légers dégageant une forte source d’énergie et de nouveaux neutrons. Ce mécanisme fonctionne donc grâce à une réaction en chaîne.

 

Moins polluant et plus sécurisé que la fission nucléaire

Pourtant la fission émet des déchets radioactifs de haute activité à longue vie contrairement à la fusion. Les matériaux provenant de la fusion peuvent en effet être recyclés ou réutilisés dans les 100 ans.  De même, les combustibles de la fusion, le deutérium et le tritium (isotopes d’uranium), sont quasiment inépuisables. Le premier est, en effet, obtenu à partir de l’eau et le second du lithium.

Ce processus, en plus de n’émettre aucun gaz à effet de serre, est plus sécurisé que la fission nucléaire. En effet, aucun accident nucléaire, ressemblant à celui de Fukushima, ne peut avoir lieu dans des réacteurs de fusion. La fusion d’un cœur de réacteur est, en effet, déclenchée par les matériaux combustibles et les produits de fission qui surchauffent.

 

Qui a découvert la fusion nucléaire?

En 1920, l’astrophysicien anglais Arthur Eddington, est le premier à suggérer qu’une réaction nucléaire pourrait produire cette énergie qui entoure les étoiles. Le physicien Hans Bethe confirmera ses propos en mettant en équations la fusion nucléaire dès 1939. C’est cependant le physicien Ernest Rutherford qui réussit, en 1934, à obtenir en laboratoire la première fusion de deutérium en hélium.

Son assistant, Mark Oliphant, quant à lui découvrira le second combustible de la fusion : le tritium. Il faudra attendre 1946 pour que les physiciens britanniques George Paget Thomson et Moses Blackman déposent le premier brevet de réacteur à fusion nucléaire. Et puis, dans les années 1960, les physiciens soviétiques développeent les premiers réacteurs à fusion (ou tokamak).

Depuis lors, l’IAEA a joué un rôle particulièrement important dans la coopération internationale en matière de recherche sur la fusion. Elle a notamment impulsé nombre de découvertes depuis 1961 grâce à ses conférences FEC. Celle de 2021 a d’ailleurs ouvert ses portes le 10 mai.

 

fusion nucléaire
Les 42 hectares du site du projet de fusion nucléaire ITER situé à Cadarache en France.

 

Le projet ITER : 35 pays aoutour du plus grand tokamak au monde

Actuellement, l’un des programmes scientifiques les plus ambitieux dans le domaine de la fusion nucléaire est le projet ITER. Ce dernier regroupe 35 pays qui ont décidé de construire le plus grand tokamak du monde entier. Le site pèsera 23.000 tonnes pour 50 mètres de haut et la chambre à vide pourra contenir un volume de plasma de 830 mètres cubes.

Cette structure en forme de beignet est le dispositif le plus couramment utilisé pour chauffer les combustibles. Ces derniers deviennent alors du plasma. En effet, les électrons s’échappent de leur noyaux et sont retenus dans des champs magnétiques au centre de la structure pour ne pas faire fondre les parois.

 

La première installation capable de produire de l’énergie nette

Mais pour provoquer un grand nombre de fusions et ainsi produire de l’électricité nette, le plasma doit être chauffé à une température de 100 millions de degrés. En effet, actuellement le processus de fusion utilise toute l’énergie émise, ne laissant aucune surplus pour alimenter autre chose.

Pourtant l’ITER veut être la première installation capable de produire de l’énergie nette. Son objectif : produire 500 MW d’énergie pour une puissance d’entrée de 50 MW. Une innovation permise grâce à la maîtrise de l’énergie de fusion thermonucléaire obtenue par confinement magnétique d’un plasma de deutérium-tritium.

 

Un plasma chauffé à 150 millions de degrés

Cette prouesse technique est en partie due à la température du tokamak qui s’approchera des 200 millions de degrés. Ce dernier atteindra, en effet, les 150 millions de degrés.

Autres buts :  entretenir une réaction de fusion durant une longue durée et tester les matériaux qui seront requis pour produire du courant électrique dans une perspective commerciale.

 

Un « premier plasma » en décembre 2025

L’installation ITER est en construction depuis 2010 sur le site de Cadarache de 42 hectares, en France. Les travaux du tokamak ont été inaugurés en 2014. Il faudra, cependant, attendre décembre 2025 pour que le « premier plasma » ait lieu.

Les coûts de ce projet et les résultats obtenus sont partagés entre les sept membres : la Chine, L’Union européenne, l’Inde, le Japon, la Corée, la Russie et les Etats-Unis. D’autres accords de coopération ont été conclus avec l’Australie, le Kazakhstan, le Canada mais aussi des organisations internationales et des laboratoires.

 

Egis investit dans la gestion des déchets radioactifs

L’ASN a cependant souligné lors d’une de ses inspections la nécessité de développer une filière de gestion des déchets radioactifs produits par l’ITER. L’entreprise d’ingénierie française EGIS,  partenaire du projet, vient d’ailleurs de prendre une participation majoritaire au capital de Galson Sciences Limited. Cette dernière est une société anglaise spécialisée dans la gestion et le stockage des déchets radioactifs.

 

Les startups innovent

Certaines startups s’illustrent aussi dans le domaine de la fusion nucléaire grâce à leurs inventions. C’est notamment le cas de Tri Alpha Energy, société américaine créée en 1998. Cette dernière a annoncé avoir produit un plasma stable à plus de 50 millions de degrés dans un réacteur compact de conception exclusive.

La technologie, Norman, a été développée en 2015 grâce à un financement de 150 millions de dollars. Sa configuration linéaire compact permet de continuer de confiner le plasma de manière améliorée à mesure que la température augmente. Sa stabilité est alors garantie indéfiniment.

 

fusion nucléaire
Intérieur d’un réacteur à fusion nucléaire.

 

TAE obtient $280 millions pour financer son projet Copernicus

L’entreprise utilise la source d’énergie la plus propre pour réaliser ses fusions : l’hydrogène et le bore. Une ressource presque inépuisable dans la nature. Grâce à cette innovation TAE a obtenu 280 millions de dollars d’investisseurs tels que Google, Vulcan, Venrock, NEA, ou encore Wellcome Trust.

Au total, l’entreprise aura levé 880 millions de dollars auprès d’investisseurs. Ces derniers seront utilisés pour construire un centre de recherche sur la fusion : Copernicus. Fonctionnant à plus de 100 millions de degrés, cette technologie permettra à l’entreprise de produire de l’énergie nette. Si elle devance le projet ITER, elle sera donc la première à dégager une production nette.

 

Des centrales électriques à fusion commercialisées dès 2030 ?

Avec ce projet, l’entreprise espère fournir une centrale électrique à fusion commerciale économiquement viable d’ici la fin de la décennie. Cette technologie pourrait aussi permettre de prolonger l’autonomie des voitures électriques et réduire leur temps de chargement.

 

Commonwealth Fusion Systems mise sur des petits aimants supraconducteurs

Créée en 2018, la société américaine, Commonwealth Fusion Systems, espère aussi devancer le projet ITER. Grâce à 200 millions d’investissement, provenant notamment de Breakthrough Energy, l’entreprise est en train de créer un nouveau réacteur en collaboration avec les chercheurs du MIT : le SPARC. Celui-ci sera doté d’aimants supraconducteurs petits mais puissants.

Le projet ITER utilise des fils supraconducteurs à basse température en alliage de niobium pour ses aimants. Problèmes : ces derniers doivent être refroidis à 4 degrés à l’hélium liquide et ne peuvent transporter qu’une faible quantité de courant. Un phénomène qui rend le projet coûteux.

La technologie ReBCO pour 2025

Pourtant l’entreprise américaine a décidé de miser sur les supraconducteurs à hautes températures grâce à la technologie ReBCO. De fines couches d’oxyde de baryum et de cuivre supraconducteur sont déposées sur un ruban métallique. Ce dernier s’enroule comme des bandes de sucre d’orge.

Une technologie qui peut transporter un courant plus élevé et pourrait générer un champ de 20 teslas. L’entreprise devrait terminer la construction de son premier aimant dès juin. Elle espère pouvoir démarrer son réacteur, qui produira plus d’énergie qu’il en consomme, en 2025.

 

Tokamak Energy développera un réacteur en 2027

Tokamak Energy, entreprise anglaise créée en 2009, a suivi cette voie mais a décidé d’enrouler le ruban ReBCO à plat. Ses aimants devraient être testés à la fin de l’année et un réacteur de démonstration verra le jour en 2027. L’approvisionnement en rubans ReBCO reste difficile, seulement quelques centaines de kilomètres sont produits par an.

 

Une multitude d’entreprises de fusion nucléaire dans le monde

Les années 1990 et 2000 marquent l’apparition de nombreuses startups travaillant sur la fusion nucléaire. Chacun développant ses propres technologies. Créé en 2002 au Canada, General Fusion développe des réacteurs magnétisés comme l’entreprise Helion Energy développée en 2014.

Localisé aux Etats-Unis dès 2005, Phoenix se spécialise dans les réacteurs basés sur l’hydrogène. Créé plus récemment en 2005, First Light Fusion a créé une réaction d’implosion symétrique de l’hélium à partir de l’eau créant une température égale à celle du soleil. De son côté, Brillant Light Power, créé en 1991, propose une nouvelle énergie obtenue en comprimant l’atome d’hydrogène : l’hydrino.

La course aux innovations, pour créer le premier réacteur à fusion produisant de l’énergie nette, est donc lancée. Un exploit qui permettrait de répondre à la demande croissante en électricité. Les objectifs de décarbonisation des pays seraient aussi plus facilement atteignables. Il reste maintenant à savoir si la fusion nucléaire sera utilisable avant que le réchauffement planétaire atteigne la limite des 1,5 degré.

La France se positionne sur les petits réacteurs modulaires avec onze recommandations clés

La Commission de régulation de l’énergie propose un plan structuré pour accélérer le déploiement des petits réacteurs modulaires en France, misant sur la chaleur industrielle et l’effet de série pour gagner en compétitivité.

Nuclearn lève $10.5mn pour renforcer l’automatisation des centrales nucléaires

La société américaine Nuclearn a levé $10.5mn pour étendre sa plateforme d’intelligence artificielle, déjà utilisée dans plus de 65 réacteurs nucléaires, afin d’automatiser les opérations critiques dans un contexte de forte demande énergétique.

MCatalysis lève des fonds pour industrialiser sa technologie de catalyse micro-ondes issue d’Oxford

La start-up texane MCatalysis obtient un financement d’amorçage de HL Energy Ventures pour exploiter sous licence exclusive une technologie de catalyse micro-ondes développée à l’Université d’Oxford.
en_1140909269540

La coupole interne du réacteur Haiyang 4 installée avec succès en Chine

Le dôme en acier du réacteur CAP1000 Haiyang 4 a été positionné, une étape majeure de construction qui ouvre la voie aux prochaines phases de maintenance et d’installation technique.

Altalto obtient un financement public pour son projet de carburant aérien issu de déchets au Royaume-Uni

Altalto (Immingham) Limited reçoit un soutien du gouvernement britannique pour intégrer les technologies de NEXTCHEM dans son projet de carburant d’aviation durable produit à partir de déchets municipaux.

Les industriels du nucléaire français et belge scellent un accord de coopération stratégique

Le Groupement des Industriels Français de l'Énergie Nucléaire et le Belgian Nuclear Forum officialisent un partenariat visant à renforcer les échanges industriels et les projets conjoints entre les filières nucléaires des deux pays.
en_114080920259540

L’Agence internationale de l’énergie atomique presse l’Iran de reprendre les inspections nucléaires

L’Agence internationale de l’énergie atomique alerte sur le peu de temps restant pour conclure un accord avec l’Iran sur la reprise complète des inspections, alors que les sanctions européennes pourraient être réactivées sous 30 jours.

Les réacteurs de Westinghouse et d’EDF jugés viables pour le projet nucléaire slovène JEK2

Le projet JEK2 en Slovénie avance avec deux technologies nucléaires retenues comme techniquement compatibles, estimées entre EUR9.31bn ($10.1bn) et EUR15.37bn ($16.66bn).

Oklo investit $1.7bn dans une usine de recyclage nucléaire au Tennessee

La société américaine Oklo construira à Oak Ridge le premier centre privé de recyclage de combustible nucléaire aux États-Unis, avec un investissement de $1.7bn et la création de plus de 800 emplois.
en_11405092950540

TVA et ENTRA1 scellent un accord historique pour 6 GW de réacteurs SMR aux États-Unis

La Tennessee Valley Authority s’associe à ENTRA1 Energy pour développer jusqu’à 6 gigawatts de capacité nucléaire modulaire, dans un projet inédit soutenant la croissance énergétique de sept États américains.

AIEA: l’Iran détenait 440,9 kg à 60% avant les frappes israéliennes

Un rapport de l’Agence internationale de l’énergie atomique chiffre à 440,9 kg l’uranium iranien enrichi à 60 % avant les frappes israéliennes et américaines, l’accès de l’agence aux sites d’enrichissement demeurant suspendu depuis les opérations.

Westinghouse renforce sa chaîne d’approvisionnement au Royaume-Uni pour ses réacteurs nucléaires

Le groupe américain Westinghouse a conclu six accords industriels au Royaume-Uni pour fournir des composants critiques à ses projets nucléaires AP1000 et AP300, au Royaume-Uni et à l’international.
en_114030932540

NANO Nuclear décroche un contrat de $1.25mn pour son microréacteur KRONOS MMR

NANO Nuclear Energy obtient un financement direct de la branche innovation de l'US Air Force pour évaluer l’intégration de son microréacteur KRONOS MMR™ sur la base militaire de Washington D.C.

EDF prolonge deux réacteurs nucléaires au Royaume-Uni jusqu’en mars 2028

EDF étend d’un an l’exploitation des centrales de Heysham 1 et Hartlepool après des inspections de sûreté favorables, garantissant la continuité de la production nucléaire et la préservation de plus de 1 000 emplois.

RWE activates 83 megawatts of wind and solar capacity in France

German group RWE has commissioned five new power plants in France, adding 83 MW to its portfolio, following repeated successes in tenders organised by the Energy Regulatory Commission.
en_11401092026540

Rosatom prépare de nouveaux projets nucléaires en Inde et en Turquie

Le groupe nucléaire russe Rosatom a confirmé des discussions avancées avec l’Inde et la Turquie pour le lancement de nouvelles centrales, incluant des technologies de réacteurs avancés et flottants.

Des traces d’uranium détectées en Syrie sur un site lié à un ancien bombardement israélien

L’Agence internationale de l’énergie atomique a identifié des particules d’uranium d’origine industrielle dans des échantillons prélevés sur un site syrien suspecté d’avoir abrité un réacteur nucléaire non déclaré.

Norvège : lancement du processus d’évaluation pour deux projets nucléaires

Les autorités norvégiennes amorcent la première phase réglementaire pour deux projets de réacteurs nucléaires modulaires, marquant une étape stratégique dans l'examen national du rôle potentiel de l’énergie nucléaire dans le mix énergétique du pays.
en_114001092025540

L’Inde accélère son programme nucléaire pour intégrer le top 5 mondial

Avec onze réacteurs en construction et des projets majeurs comme Jaitapur, l’Inde prépare une montée en puissance nucléaire qui pourrait la placer parmi les cinq premières nations du secteur.

Paris et Berlin s’accordent sur une feuille de route énergétique incluant le nucléaire

La France et l’Allemagne ont validé une feuille de route commune sur l’énergie, comprenant un engagement pour la non-discrimination de l’énergie nucléaire dans les financements européens.

Connectez-vous pour lire cet article

Vous aurez également accès à une sélection de nos meilleurs contenus.

ou

Passez en illimité grâce à notre offre annuelle:
99$ la 1ère année, puis 199$ /an.