L’avenir de la flexibilité énergétique : Le rôle croissant de la technologie Power-to-Hydrogen-to-Power (PtP)

Face à l’intermittence des énergies renouvelables, la technologie Power-to-Hydrogen-to-Power (PtP) pourrait révolutionner le stockage de l’énergie. Toutefois, son adoption dépend encore de la réduction des coûts et de l'amélioration de son efficacité.

Partager:

Abonnez-vous pour un accès illimité à toute l'actualité du secteur de l'énergie.

Plus de 150 articles et analyses multisectorielles chaque semaine.

À moins de 3/semaine*

*Engagement annuel

Le secteur énergétique mondial fait face à un défi majeur : intégrer des énergies renouvelables intermittentes tout en assurant la stabilité des réseaux électriques. L’éolien et le solaire, bien que cruciaux pour la transition énergétique, ne sont pas constants et peuvent entraîner des périodes de surproduction ou de pénurie. Dans ce contexte, la technologie Power-to-Hydrogen-to-Power (PtP) émerge comme une solution prometteuse pour stocker l’excédent d’électricité sous forme d’hydrogène, puis le reconvertir en énergie. Cependant, plusieurs défis économiques et techniques doivent être surmontés pour rendre cette technologie viable à grande échelle.

Le principe de la technologie Power-to-Hydrogen-to-Power (PtP)

Le concept de PtP repose sur deux étapes principales : l’électrolyse de l’eau pour produire de l’hydrogène à partir d’électricité excédentaire, et la reconversion de cet hydrogène en électricité via une pile à combustible ou une turbine à gaz. L’électrolyse utilise l’électricité excédentaire pour diviser l’eau en oxygène et en hydrogène. Cette production d’hydrogène peut ensuite être stockée sous forme gazeuse dans des réservoirs haute pression ou sous forme liquide à des températures très basses. L’hydrogène stocké peut être utilisé dans une pile à combustible pour produire de l’électricité lorsqu’il est nécessaire, ou dans une turbine à gaz, comme une alternative aux centrales thermiques classiques.

Les rendements de la technologie PtP

Le rendement de la technologie PtP varie selon les composants utilisés. L’électrolyseur, qui divise l’eau en oxygène et en hydrogène, a un rendement qui oscille entre 60% et 79% selon la technologie utilisée. Les électrolyseurs à membrane échangeuse de protons (PEM) sont généralement plus coûteux mais offrent des rendements plus élevés, tandis que les électrolyseurs alcalins, bien que moins chers, ont des rendements plus faibles, entre 48% et 70%. Cette première étape de conversion est donc relativement efficace, mais elle reste inférieure à celle des autres technologies de stockage, comme les batteries lithium-ion.

La reconversion de l’hydrogène en électricité par pile à combustible ou turbine à gaz souffre d’une perte d’efficacité supplémentaire. Les rendements des piles à combustible varient entre 45% et 60%, tandis que les turbines à gaz offrent des rendements de l’ordre de 35% à 48%. Par conséquent, l’ensemble du processus Power-to-Hydrogen-to-Power peut afficher un rendement global qui varie entre 27% et 33%, ce qui le rend moins compétitif par rapport à d’autres formes de stockage d’énergie à court terme, comme les batteries de lithium-ion ou les systèmes de stockage par pompage.

Les avantages du PtP pour la gestion des fluctuations de production d’énergie

L’un des principaux avantages de la technologie PtP est sa capacité à stocker l’électricité à long terme. Contrairement aux batteries lithium-ion, qui sont plus adaptées au stockage d’énergie sur de courtes périodes (quelques heures à quelques jours), l’hydrogène peut être stocké pendant des périodes beaucoup plus longues, allant de plusieurs semaines à plusieurs mois. Ce stockage de longue durée pourrait aider à pallier les périodes de faible production des énergies renouvelables, comme les journées sans vent ou les périodes nuageuses qui limitent l’efficacité des panneaux solaires.

En Allemagne, par exemple, la production d’énergie éolienne peut chuter considérablement pendant l’hiver, notamment pendant la saison de « dunkelflaute » où les conditions météorologiques rendent l’éolien presque inutile. À cette période, le stockage d’hydrogène pourrait fournir une source d’énergie stable pour alimenter le réseau. Selon une étude menée par l’International Renewable Energy Agency (IRENA), l’Allemagne pourrait intégrer jusqu’à 7% de sa consommation énergétique annuelle dans des systèmes PtP d’ici 2030, contribuant ainsi à la résilience du réseau.

Les enjeux géopolitiques et économiques du stockage d’hydrogène

L’augmentation de la production d’hydrogène et le stockage de l’énergie sous forme d’hydrogène apportent également des avantages géopolitiques. L’hydrogène peut être produit localement, ce qui permet de réduire la dépendance vis-à-vis des importations d’énergie fossile. Cela constitue un enjeu stratégique majeur pour les pays qui cherchent à diversifier leurs sources d’énergie, réduire leur empreinte carbone et garantir leur indépendance énergétique. La Chine, par exemple, prévoit d’investir massivement dans les infrastructures de production d’hydrogène pour soutenir sa transition énergétique et sécuriser son approvisionnement énergétique à long terme.

Cependant, les coûts de production de l’hydrogène par électrolyse sont actuellement élevés. Le coût d’un kilowattheure (kWh) d’énergie produit par PtP varie entre 0,35 et 0,55 USD/kWh, selon la technologie utilisée et l’emplacement de la production. Ce coût est encore supérieur à celui de la production d’énergie à partir de gaz naturel ou de charbon, mais il pourrait baisser à mesure que la technologie se développe et que l’échelle de production augmente. Les experts estiment qu’à mesure que les investissements augmentent et que la production se standardise, le coût de l’électricité à partir d’hydrogène pourrait diminuer de 30% à 50% d’ici 2030.

La rentabilité économique de la technologie PtP

Le coût des systèmes PtP, qui incluent les électrolyseurs et les turbines à gaz, est également un obstacle à leur adoption à grande échelle. Actuellement, les installations de stockage d’hydrogène sont bien plus coûteuses que les technologies alternatives. Par exemple, le coût d’installation d’un électrolyseur à haute capacité est estimé à environ 300 USD/kWh, ce qui est bien plus élevé que le coût de production des batteries lithium-ion (environ 100 à 300 USD/kWh). De plus, les infrastructures nécessaires pour transporter et stocker l’hydrogène (réservoirs haute pression, pipelines) augmentent encore le coût total du système.

Cependant, la rentabilité à long terme de PtP pourrait devenir plus compétitive si le stockage d’hydrogène devient plus courant. Les projets pilotes dans des pays comme l’Allemagne, le Royaume-Uni et les États-Unis montrent des signes positifs. Par exemple, un projet pilote en Allemagne, financé par l’UE, a montré qu’une solution PtP à grande échelle pourrait entraîner des réductions de coûts de 15% à 20% à partir de la troisième génération de systèmes, ce qui pourrait rendre cette technologie plus rentable à long terme.

Les projets internationaux et la viabilité de PtP

Dans plusieurs pays, des projets pilotes ont été lancés pour tester la viabilité de la technologie PtP à grande échelle. En Belgique, par exemple, un projet de 10 MW de production et de stockage d’hydrogène devrait être achevé d’ici 2025. Ce projet vise à démontrer l’efficacité de l’hydrogène comme solution de stockage d’énergie à long terme. En France, plusieurs études montrent que l’hydrogène pourrait couvrir environ 10% des besoins en électricité d’ici 2035, grâce à une combinaison de systèmes PtP et d’autres technologies de stockage.

En Asie, le Japon et la Corée du Sud investissent dans des infrastructures de production d’hydrogène pour diversifier leurs sources d’énergie. La Chine a lancé un projet ambitieux de « réseau de gaz à hydrogène », visant à connecter plusieurs régions pour distribuer l’hydrogène à faible coût et augmenter la part de l’hydrogène dans le mix énergétique du pays.

L’Australie recalibre ses ambitions hydrogène après la vague d’abandons de projets majeurs

Les retraits de BP et Fortescue révèlent l'écart entre promesses et réalité économique du secteur, malgré 22,7 milliards de dollars australiens d'incitations gouvernementales.

Endua obtient un financement de $4.88mn pour accélérer la fabrication d’électrolyseurs hydrogène

Endua, entreprise australienne de technologie, reçoit un financement public de $4.88mn pour renforcer sa capacité de production d’électrolyseurs hydrogène modulaires, soutenant l’expansion des chaînes d’approvisionnement locales et le développement industriel dans le secteur de l’hydrogène.

États-Unis : HydrogenXT obtient un financement de $900mn pour lancer dix sites d’hydrogène

HydrogenXT sécurise un accord de $900mn avec Kell Kapital Partners Limited pour développer dix premières usines locales d’hydrogène bleu à zéro carbone sur des axes logistiques clés aux États-Unis.
en_114060847540

Elogen livre un électrolyseur de 2,5 MW pour le hub énergétique de CrossWind

Elogen finalise la livraison d’un électrolyseur à membrane échangeuse de protons de 2,5 MW destiné au Baseload Power Hub, lié au parc éolien offshore Hollandse Kust Noord et opéré par la coentreprise CrossWind.

FRV s’allie à Envision pour un projet d’ammoniac vert de 500MW au Brésil

Fotowatio Renewable Ventures s’associe à Envision Energy pour le projet H2 Cumbuco, visant une usine d’ammoniac vert de 500MW destinée aux marchés brésilien, européen et asiatique.

Element 2 confie à HRS une nouvelle station hydrogène mobile pour la région de Glasgow

Element 2 renforce son partenariat avec HRS pour installer une station hydrogène mobile à Glasgow, s’inscrivant dans la stratégie d’expansion de son réseau de ravitaillement au Royaume-Uni et en Irlande.
en_1140310741540

Allianz anticipe un marché de l’assurance hydrogène dépassant 3 milliards USD d’ici 2030

Le développement mondial de l’hydrogène, soutenu par plus de 1 500 projets en cours et d’importants investissements, stimule une forte demande de couverture d’assurance, avec un potentiel estimé à plus de 3 milliards USD en primes annuelles d’ici 2030.

ArcelorMittal Brazil lance avec Utility Global un projet hydrogène innovant à Juiz de Fora

ArcelorMittal Brazil initie une collaboration avec Utility Global pour développer un projet d’hydrogène propre, utilisant le système breveté H2Gen, destiné à produire jusqu’à 3 tonnes par jour dans l’usine de Juiz de Fora.

ENERTRAG investit 300 mn € dans un site d’hydrogène vert de 130 MW à Prenzlau

La société ENERTRAG annonce l’acquisition d’un terrain à Prenzlau pour installer une unité de production d’hydrogène vert de 130 mégawatts, avec un investissement prévu de 300 mn €, soutenant ainsi l’économie régionale et le secteur industriel local.
en_114030072032540

H2APEX lève EUR30mn pour renforcer son projet hydrogène à Lubmin et acquérir HH2E Werk

H2APEX Group SCA a finalisé une augmentation de capital de EUR30mn ($32.5mn) destinée à financer l’acquisition de HH2E Werk Lubmin GmbH et à soutenir le développement de son projet hydrogène en Allemagne. —

Next Hydrogen démarre la plus grande station de ravitaillement en hydrogène propre de l’Ontario

Next Hydrogen lance la plus grande station de production et distribution d’hydrogène propre sur site en Ontario, capable de fournir jusqu’à 650 kg par jour pour l’alimentation de chariots élévateurs à pile à combustible.

Envision Energy lance le premier avitaillement maritime mondial en ammoniac vert en Chine

Un navire portuaire de 5 500 chevaux a été avitaillé en ammoniac vert au terminal de Dalian, marquant la création d’une chaîne de valeur complète pour ce carburant et un jalon technique pour le secteur maritime.
en_114028072035540-2

Air Liquide engage plus de 500 mn € dans un électrolyseur géant aux Pays-Bas

Air Liquide lance la construction de l’électrolyseur ELYgator à Rotterdam, un projet de 200 MW, avec le soutien du gouvernement néerlandais et un investissement supérieur à 500 mn €.

Des chercheurs allemands testent la production d’hydrogène vert offshore avec l’eau de mer brute

Un projet pilote en Allemagne vise à produire de l’hydrogène vert en mer directement à partir d’eau de mer non traitée sur des parcs éoliens offshore, grâce à des bactéries marines et des matériaux résistants.

BP met fin à son engagement dans le projet hydrogène AREH de 26 GW en Australie occidentale

BP se retire du Australian Renewable Energy Hub, un projet majeur d’hydrogène et d’ammoniac renouvelables dans la région de Pilbara, marquant une nouvelle étape pour les investissements énergétiques en Australie.
en_114028072031540

Next Hydrogen obtient un financement de 1,5 mn CAD pour soutenir ses opérations

Next Hydrogen lève 1,5 mn CAD auprès de ses dirigeants et d’un prêteur commercial afin de renforcer sa trésorerie et préserver ses équipes, tout en maintenant son examen de solutions financières et stratégiques.

Lhyfe lève 2,5 M€ auprès de citoyens pour soutenir l’hydrogène vert en Europe

La première campagne européenne de financement citoyen dédiée à l’hydrogène vert a permis à Lhyfe de collecter 2,5 M€ auprès de près de 1 200 investisseurs, renforçant le développement de nouveaux sites en France et en Allemagne.

Scale Green Energy obtient €8mn pour six stations hydrogène en Espagne

Filiale d’Enagás, Scale Green Energy a obtenu un financement européen de €8mn ($8.7mn) pour installer six stations de ravitaillement en hydrogène renouvelable sur les corridors atlantiques et méditerranéens espagnols.
en_114022072030540-2

Les Pays-Bas accordent EUR700mn à onze projets industriels d’hydrogène vert

Onze projets d’hydrogène vert, totalisant 602 MW, reçoivent un soutien de EUR700mn ($818.2mn) du gouvernement néerlandais afin d’accélérer la production industrielle par électrolyse.

Ballard Power Systems signe une commande de 6,4 MW pour équiper deux navires de Samskip

Ballard Power Systems fournira 32 moteurs à pile à combustible d'une puissance totale de 6,4 MW à eCap Marine pour deux navires de Samskip, renforçant la propulsion sans émissions sur les routes maritimes entre la Norvège et les Pays-Bas.

Poursuivez votre lecture en choisissant l’une des options

Compte gratuit

Accès membres

Consent Preferences