articles populaires

Fusion Nucléaire: le MIT explore une Nouvelle Technologie

La fusion nucléaire pourrait devenir commercialement viable grâce au développement d'une nouvelle technologie de super-aimant.|La fusion nucléaire pourrait devenir commercialement viable grâce au développement d'une nouvelle technologie de super-aimant.

Partagez:

La fusion nucléaire pourrait devenir commercialement viable grâce à un super-aimant développé par la startup Commonwealth Fusion Systems et les scientifiques du MIT.

 

La fusion nucléaire alimentée par un aimant superpuissant

Un aimant extrêmement puissant générant une chaleur intense, elle-même convertible en électricité, pourrait former la base d’un réacteur à fusion. C’est ce qu’affirment des chercheurs du MIT et des ingénieurs de la startup Commonwealth Fusion Systems. Cet aimant serait l’élément central d’un Tokamak, un réacteur compact utilisant les forces magnétiques pour comprimer le plasma.

Les responsables de la startup affirment que cette avancée technologique importante rendra les tokamaks commercialement viables pour la première fois. La startup déclare ne pas encore être prête à tester son prototype de réacteur. Mais les chercheurs sont en train d’achever l’aimant et espèrent qu’il sera exploitable d’ici à 2025.

 

5 fois plus petit que le projet ITER

Un consortium composé de membres de l’UE et de six autres pays travaillent à l’assemblage d’un réacteur à Cadarache, France. De la taille d’un terrain de football, le projet ITER est censé pouvoir commencer à produire de l’électricité en 2035. Les scientifiques américains ambitionnent de présenter ce mois-ci un champ magnétique deux fois plus puissant que les aimants du consortium.

« Si vous passez à un champ magnétique beaucoup plus élevé, vous pouvez passer à une taille beaucoup plus petite », explique Bob Mumgaard, physicien des plasmas et PDG de Commonwealth. Selon lui, un dispositif cinq fois plus petit que le réacteur prévu en France pourrait générer presque autant d’énergie.

L’aimant de Commonwealth sera l’un des 20 aimants d’une cuve occupant un espace de la taille d’un court de tennis. La startup a implanté un site à Devens, Massachusetts, où elle construira son prototype de réacteur et ses aimants. Les aimants se composent d’une pellicule de matériaux rares sur une bande enroulée autour d’une bouteille pour contenir la fusion.

 

Atteindre une production d’énergie positive

L’année dernière, Commonwealth Fusion Systems a publié sept articles dans le Journal of Plasma Physics à propos de son réacteur. Publiés conjointement avec des physiciens du Plasma Science and Fusion Center du MIT, ceux-ci avaient permis de lancer son activité. La société espère que son tokamak pourra produire dix fois plus d’énergie qu’il n’en consomme.

Cela reste néanmoins à prouver, de même que la compétitivité de l’électricité provenant des réacteurs à fusion nucléaire. En effet, la construction de réacteurs à fusion à grande échelle est particulièrement coûteuse. De plus, le coût d’autres types d’énergie a tendance à chuter.

Jusqu’à présent, le projet Joint European Torus (JET) est le meilleur prototype à fusion nucléaire. Lancé en 1983 dans l’Oxfordshire, en Angleterre, le dispositif avait produit 16 MW d’énergie de fusion pour 24 MW consommés.

 

D’ici 10 ans ?

Daniel Jassby, physicien des plasmas émérite de l’Université de Princeton, exprime son scepticisme envers « l’énergie de fusion vaudou ». Jassby reconnaît le potentiel de Commonwealth, mais estime peu probable que la fusion produise de l’énergie électrique bon marché.

« Les revendications [de ces entreprises] sont injustifiées », déclare le Dr. Jassby dans une interview. « Elles pourraient effectivement faire fonctionner quelque chose comme ça un jour, mais pas dans les délais dont elles parlent ».

Au contraire, le Dr. Mumgaard pense que Commonwealth et les chercheurs du MIT réaliseront bientôt leurs objectifs. Contrairement aux autres sources d’énergie, la fusion permettrait de créer de l’énergie à partir de quasiment rien. « Si l’on additionne tous les coûts, le coût des éléments normaux comme le béton et l’acier, on obtient autant d’énergie qu’une centrale au gaz, mais sans avoir à payer le gaz », a déclaré le Dr. Mumgaard.

 

Les scientifiques sont de plus en plus optimistes

La fusion représente une technologie cruciale contre le réchauffement climatique, car elle pourrait générer beaucoup d’énergie propre à bas coûts. Cependant, cette technologie n’a jamais atteint le stade commercial, malgré des décennies d’investissements et de promesses.

Comme la traditionnelle fission nucléaire, l’énergie de fusion ne consommerait pas de combustible fossile et ne produirait pas de gaz à effet de serre (GES). De plus, son carburant, généralement des isotopes d’hydrogène, est plus abondant que l’uranium utilisé dans les centrales nucléaires actuelles. Les déchets des centrales à fusion seraient également moins dangereux et moins radioactifs.

L’énergie de fusion reste donc, jusqu’ici, inexploitable. Malgré cela, elle est toujours considérée comme une solution pour stopper la dépendance aux combustibles fossiles. Certains chercheurs pensent que la recherche sur la fusion pourrait enfin payer au cours de cette décennie.

Les investissements augmentent

De nombreuses entreprises privées américaines, européennes, chinoises et australiennes investissent massivement dans la construction de réacteurs à fusion commerciaux. L’investissement total de personnes telles que Bill Gates et Jeff Bezos approche les $2 milliards. Des consortiums financés par les gouvernements se joignent aussi à l’effort.

Par exemple, le gouvernement fédéral américain dépense environ $600 millions par an dans la recherche sur la fusion. Une proposition d’amendement suggère même d’ajouter $1 milliard au projet de loi sur les infrastructures de l’administration Biden.

Certaines entreprises et consortiums construisent de puissants lasers pour générer la fusion, d’autres explorent de nouveaux types de combustibles. Tous partagent le même objectif : produire de l’électricité à un prix compétitif au cours de cette décennie. Et construire des centrales à fusion nucléaire commerciales pour alimenter les réseaux électriques d’ici à la prochaine décennie.

Inscrivez-vous gratuitement pour un accès sans interruption.

Publicite

Récemment publiés dans

La stratégie de suppression du dioxyde de carbone se développe en Inde avec des initiatives nouvelles et une possible hausse de la demande en 2025. Cet article explore les facteurs majeurs qui favorisent cette tendance et les perspectives technologiques.
Un armateur norvégien a doté un transporteur d'éthylène d'un système embarqué de captage et stockage du CO2. L'initiative pourrait réduire ses émissions de gaz à effet de serre de 70%.
Un armateur norvégien a doté un transporteur d'éthylène d'un système embarqué de captage et stockage du CO2. L'initiative pourrait réduire ses émissions de gaz à effet de serre de 70%.
Gigablue et SkiesFifty collaborent pour capturer 200 000 tonnes de CO₂ grâce à des solutions marines innovantes, renforçant les ambitions net zéro de l'aviation.
Gigablue et SkiesFifty collaborent pour capturer 200 000 tonnes de CO₂ grâce à des solutions marines innovantes, renforçant les ambitions net zéro de l'aviation.
La côte du Golfe des États-Unis développe des projets de captage de carbone pour décarboniser ses industries lourdes, mais des défis réglementaires et financiers freinent leur mise en œuvre.
La côte du Golfe des États-Unis développe des projets de captage de carbone pour décarboniser ses industries lourdes, mais des défis réglementaires et financiers freinent leur mise en œuvre.
Chevron et ses partenaires, Shell et Mobil, explorent le stockage géologique de CO₂ au large de l’Australie, un projet clé pour la gestion des émissions dans le bassin de Carnarvon Nord.
Le Département de l'Énergie des États-Unis finance un projet de 200 millions USD porté par Technip Energies et LanzaTech pour transformer le CO2 capturé en éthanol et éthylène, réduisant ainsi l’empreinte carbone de l’industrie chimique.
Le Département de l'Énergie des États-Unis finance un projet de 200 millions USD porté par Technip Energies et LanzaTech pour transformer le CO2 capturé en éthanol et éthylène, réduisant ainsi l’empreinte carbone de l’industrie chimique.
En 2025, la Chine prévoit d’élargir son marché carbone en intégrant l’acier, le ciment et l’aluminium, tout en introduisant de nouvelles méthodologies pour les crédits carbone. Une refonte stratégique visera également à mieux répondre aux exigences internationales.
En 2025, la Chine prévoit d’élargir son marché carbone en intégrant l’acier, le ciment et l’aluminium, tout en introduisant de nouvelles méthodologies pour les crédits carbone. Une refonte stratégique visera également à mieux répondre aux exigences internationales.
Technip Energies, en partenariat avec GE Vernova et Balfour Beatty, construit au Royaume-Uni la première centrale au gaz dotée d’un système de captage de carbone, une avancée majeure dans la lutte contre les émissions industrielles.
Technip Energies, en partenariat avec GE Vernova et Balfour Beatty, construit au Royaume-Uni la première centrale au gaz dotée d’un système de captage de carbone, une avancée majeure dans la lutte contre les émissions industrielles.
Le transport maritime est essentiel aux initiatives transfrontalières de captage et stockage de CO2 en Asie-Pacifique, avec des volumes annuels prévus atteignant 100 millions de tonnes d’ici 2050.
Avec la baisse annuelle des seuils d'émission et des retards méthodologiques, les prix des crédits carbone en Australie devraient connaître une flambée en 2025, attirant l'attention des acteurs du marché.
Avec la baisse annuelle des seuils d'émission et des retards méthodologiques, les prix des crédits carbone en Australie devraient connaître une flambée en 2025, attirant l'attention des acteurs du marché.
SLB Capturi a achevé la construction de la première usine industrielle de captage de carbone à l'échelle mondiale pour Heidelberg Materials en Norvège. Une avancée majeure qui permettra de réduire jusqu'à 400 000 tonnes de CO2 par an dans le secteur du ciment.
SLB Capturi a achevé la construction de la première usine industrielle de captage de carbone à l'échelle mondiale pour Heidelberg Materials en Norvège. Une avancée majeure qui permettra de réduire jusqu'à 400 000 tonnes de CO2 par an dans le secteur du ciment.
L’Australie doit réduire de 15 mégatonnes ses émissions annuelles pour atteindre sa cible de réduction de 43 % d'ici 2030. Les mécanismes d'investissement et les crédits carbone joueront un rôle clé dans cet effort ambitieux.
L’Australie doit réduire de 15 mégatonnes ses émissions annuelles pour atteindre sa cible de réduction de 43 % d'ici 2030. Les mécanismes d'investissement et les crédits carbone joueront un rôle clé dans cet effort ambitieux.
La dernière enchère de quotas carbone néo-zélandaise de 2024, prévue le 4 décembre, devrait connaître une vente partielle, avec des prix dépassant les 64 NZ$/tCO2e et une hausse attendue pour 2025.
L’Australie-Occidentale dévoile un plan d’action ambitieux pour la capture, le stockage et l’utilisation du carbone (CCUS), soutenu par un financement de 16,9 millions USD, visant à atteindre la neutralité carbone tout en dynamisant son économie.
L’Australie-Occidentale dévoile un plan d’action ambitieux pour la capture, le stockage et l’utilisation du carbone (CCUS), soutenu par un financement de 16,9 millions USD, visant à atteindre la neutralité carbone tout en dynamisant son économie.
La COP29 marque un jalon dans les marchés du carbone, avec l’adoption de règles cruciales pour l’Article 6 de l’Accord de Paris. Ces avancées promettent transparence et attractivité pour les crédits carbone à l’échelle internationale.
La COP29 marque un jalon dans les marchés du carbone, avec l’adoption de règles cruciales pour l’Article 6 de l’Accord de Paris. Ces avancées promettent transparence et attractivité pour les crédits carbone à l’échelle internationale.
Hanwha Power Systems et TC Energy collaborent pour commercialiser une technologie de récupération de chaleur basée sur le CO₂ supercritique, destinée à produire une énergie zéro carbone dans les infrastructures de pipelines.
Hanwha Power Systems et TC Energy collaborent pour commercialiser une technologie de récupération de chaleur basée sur le CO₂ supercritique, destinée à produire une énergie zéro carbone dans les infrastructures de pipelines.
L’Inde se prépare à lancer un ambitieux système de commerce des crédits carbone (CCTS), axé sur la réduction de l’intensité des émissions industrielles. Ce dispositif, prévu pour 2026-27, pourrait transformer la gestion des émissions à l’échelle nationale.
Le Conseil européen a approuvé un cadre réglementaire pour certifier les activités de capture et de stockage de carbone, un jalon essentiel vers l’objectif de neutralité carbone de l’UE d’ici 2050.
Le Conseil européen a approuvé un cadre réglementaire pour certifier les activités de capture et de stockage de carbone, un jalon essentiel vers l’objectif de neutralité carbone de l’UE d’ici 2050.
L’Indonésie et le Japon établissent une collaboration historique pour le commerce de crédits carbone sous l’Accord de Paris, renforçant la transparence et les normes environnementales internationales.
L’Indonésie et le Japon établissent une collaboration historique pour le commerce de crédits carbone sous l’Accord de Paris, renforçant la transparence et les normes environnementales internationales.
L'Arabie Saoudite, principal exportateur mondial de pétrole, a inauguré sa première plateforme d'échange de crédits carbone lors de la COP29 à Baku, visant à renforcer les efforts de décarbonation et à diversifier son économie.
L'Arabie Saoudite, principal exportateur mondial de pétrole, a inauguré sa première plateforme d'échange de crédits carbone lors de la COP29 à Baku, visant à renforcer les efforts de décarbonation et à diversifier son économie.
Avec des émissions croissantes dans les secteurs pétrolier et gazier, l'Asie-Pacifique explore des solutions de captage et stockage du carbone (CCS) pour atteindre ses objectifs climatiques, mais l'absence de cadre stratégique unifié freine les progrès.
Le projet Pycasso, visant à enfouir du CO2 pour décarboner l’industrie dans le bassin de Lacq, a été abandonné. L'absence de dialogue et les risques pour les industries existantes ont été déterminants dans cette décision controversée.
Le projet Pycasso, visant à enfouir du CO2 pour décarboner l’industrie dans le bassin de Lacq, a été abandonné. L'absence de dialogue et les risques pour les industries existantes ont été déterminants dans cette décision controversée.
Le Japon devrait devenir le principal centre de commerce pour le dioxyde de carbone capturé dans la région Asie-Pacifique d'ici 2050, selon Wood Mackenzie, avec des investissements gouvernementaux et un soutien politique crucial pour y parvenir.
Le Japon devrait devenir le principal centre de commerce pour le dioxyde de carbone capturé dans la région Asie-Pacifique d'ici 2050, selon Wood Mackenzie, avec des investissements gouvernementaux et un soutien politique crucial pour y parvenir.
Singapour intensifie ses efforts pour atteindre la neutralité carbone d'ici 2050 en cofinançant des études de faisabilité sur le captage et stockage du carbone (CSC) dans ses centrales électriques. Ce projet vise à réduire les émissions tout en garantissant la sécurité énergétique du pays.
Singapour intensifie ses efforts pour atteindre la neutralité carbone d'ici 2050 en cofinançant des études de faisabilité sur le captage et stockage du carbone (CSC) dans ses centrales électriques. Ce projet vise à réduire les émissions tout en garantissant la sécurité énergétique du pays.

Publicite